Инвариантное к ориентации и масштабу распознавание визуальных образов с использованием нечеткой нейросети

Cтанкевич Л.А., Хоа Н.Д. stankevich_lev@inbox.ru, ndkhoa82@mail.ru Санкт-Петербург, СПбГПУ

Проблема распознавания образов широко исследовалась в течение двух прошедших десятилетий. Основная цель исследований — разработка обучаемых систем распознавания образов, инвариантных к масштабу, положению и ориентации объектов.

В данной работе предлагается классифицирующая нейронная сеть SFAM (Simplified Fuzzy ARTMAP), которая является упрощенным вариантом сети FAM (Fuzzy ARTMAP) [1]. SFAM определяет принадлежность входных векторов к соответствующим классам, которым она может быть обучена. В качестве специального фильтра, используемого для предварительной обработки распознаваемых объектов, предлагается использовать What and Where (W&W) фильтр [2], с помощью которого можно определить положение, размер и ориентацию объекта в изображении.

Классифицирующая сеть SFAM

Сеть SFAM разработана специально для классификации путем удаления большой избыточности сети FAM. Структура SFAM показана на Рис. 1. Здесь нейрон P_j представляет подкласс, и его весовой вектор является прототипом подкласса. Узел C_k и веса w_{ij} являются меткой класса и весовым вектором нейрона в слое выходных подклассов P_j . Параметр $\rho \in [0;1]$ — фактор вигильности.

В сети SFAM все непомеченные нейроны с единичными весами $w_{ij}=1,~\forall i,$ названы некоммитированными. После того, как нейрон назначен в класс, он помечается и называется коммитированным. В режиме работы сети, если некоммитированный нейрон выигрывает конкуренцию со всеми коммитированными нейронами, то входной вектор относится к новому классу, см. Алгоритм 1.

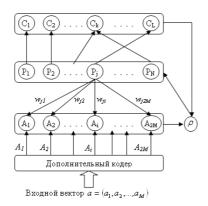
W&W фильтр

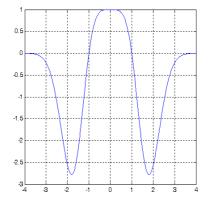
В фильтре используются пространственные ориентированные рецептивные поля с различными размерами и ориентациями, которые свертываются с входным изображением. Рецептивное поле имеет ядро с ориентацией φ градусов, размером s пикселей и протяженностью a в точке (x,y), функция ядра от r изображена на Рис. 2.

$$K(x, y, \varphi, s) = (1 - r^{6}) \exp(-r^{4}/(1 + r^{2})), \ r^{2} = (x'/a \cdot s)^{2} + (y'/s)^{2}$$
(1)
$$x' = x \cos \varphi + y \sin \varphi; \quad y' = y \cos \varphi - x \sin \varphi$$
(2)

Алгоритм 1. Обучение сети SFAM.

```
1: Определить дополнительный код из входного вектора a:
    |a|:=\sum_{i=1}^M a_i; для всех i=1,\ldots,M: a_i:=a_i/|a|; a_i^c:=1-a_i;
  Вход A автоматически нормализуется, поскольку \sum_{i=1}^{2M} A_i = M.
2: Вычислить активности нейронов и найти победительный нейрон J:
     для всех j=1,\ldots,N: T_j:=|A_j\wedge w_j|/(\alpha+|w_j|), где \alpha>0;
3: если J- коммитированный нейрон то
     если класс J — обучаемый класс то
4:
       w_J := \beta(A \wedge w_J) + (1 - \beta)w_J;
5:
6:
       T_J := 0; новый победитель J = \arg\max_j T_j; повторить шаг 3;
7:
8: иначе
9:
     w_J := A;
```


Входное изображение свертывается с каждым рецептивным полем. Активность узла A, расположенного в (x,y), рецептивное поле которого имеет ориентацию φ и размер s, определяется дискретной сверткой с входом I(x,y). Свертка между входным изображением и фильтрами различных ориентаций и размеров образует четырехмерную матрицу нейронных узлов, которая зависит от x,y,φ и s. Активность каждого из этих узлов дает степень соответствия между фигурой объекта в изображении и рецептивным полем. Позиция, ориентация и масштаб объекта может быть оценена нахождением максимальной активности.


Когда размер объекта увеличивается, ядра фильтров, определенные в (1)–(2), дают неправильные оценки позиции, ориентации и размера объекта. Чтобы устранить эту неправильность, используется нормализация весов фильтра. При этом активность выходного узла нормированного фильтра определяется как

$$A(\varphi, s) = \sum_{x} \sum_{y} K_N(x, y, \varphi, s) I_C(x, y),$$

где $K_N(x,y,\varphi,s)$ — нормированная по площади рецептивного поля функция ядра фильтра, а $I_C(x,y)$ — центрированное изображение объекта.

Путем конкуренции выбирается узел, который имеет максимальную активность, и определяются параметры φ_I и s_I . В итоге, после преобразования изображения W&W фильтром, получаем изображение объекта с нормированным размером и горизонтальной ориентацией.

Рис. 1. Структура SFAM

Рис. 2. Функция ядра фильтра в зависимости от r

Эксперимент

В эксперименте использовались бинарные изображения самолета размером 128×128 пикселей. После W&W фильтра получалось изображение с размером 32×32 пикселей, и подавалось в векторном виде на вход сети SFAM. Распознавалось 10000 изображений 10 типов боевых самолетов: по 1000 изображений каждого типа с ориентацией в диапазоне $[0^{\circ}; 2^{\circ}]$ и масштабом в диапазоне [0, 5; 2]. Обучающая выборка содержала 180 изображений: по 18 изображений для каждого типа самолета с масштабами от 0, 5 до 2 по отношению к их оригинальным изображениям. Обучение заняло 0, 6 секунды. Результаты эксперимента распознавания объектов с нормализованным и ненормализованным фильтрами и с различным количеством грубых фильтров в банках для простых и зашумленных изображений, показана в таблице.

Число фильтров	6	9	12
С нормализацией	79,10%	91,20%	96,60%
Без нормализацией	25,25%	27,40%	31,00%
С нормализацией (с шумом)	33,70%	42,30%	71,60%
Без нормализацией (с шумом)	14,60%	18,55%	24,95%

Эксперименты показали, что сеть SFAM и нормализованный фильтр дают лучшие результаты распознавания, поскольку точнее определяется размер и ориентации объекта.

Литература

- [1] Carpenter G. A., Grossber S. Fuzzy Artmap : A neural network architecture for incremental supervised learning of analog multidimensional Maps // IEEE Transactions on Neural Network. $-1992.-V.3.-Pp.\,698-712.$
- [2] Carpenter G. A., Grossber S. and Leshert G. W. What-and-Where filter. A partial mapping neural network for object recognition and image understanding // Computervision and image understanding. -1998.-V.69, No. $1.-Pp.\,1-22$.