Рис. 1. Цепочка конечных автоматов.

Об одном методе оценок Матросов В. Л., Угольникова Б. З. Москва, МПГУ

Пусть имеется объект R, который надо распознать, т. е. отнести к одному из классов K_1, \ldots, K_s . Дана начальная оценка объекта, и задан набор признаков j = 1, ..., n, по которым объект может изучаться. При этом изучение (оценка) объекта проходит последовательно. Случайным образом выбирается первый признак. Объект изучается, меняется его оценка, и т. д. После выбора k признаков (k < n) делается попытка распознать объект, при этом все k+1 оценка объекта держатся в памяти. Если распознать объект невозможно, то он изучается по следующему признаку. По последним k оценкам объекта и начальной оценке делается следующая попытка распознавания. При этом учитывается общая информация по всем предыдущим оценкам. Например, опрос студента на экзамене. Есть предварительная информация о работе в семестре. Далее случайным образом выбирается билет. Студент последовательно отвечает на вопросы, и в процессе ответа у экзаменатора или складывается окончательное мнение об оценке студента, или предлагаются дополнительные вопросы. Окончательная оценка ставится исходя из «общего впечатления» и ответов на некоторое количество последних вопросов. Для решения такой задачи предлагается использовать цепочку конечных автоматов, как показано на рисунке.

Автомат A_1 имеет p состояний $(p \geqslant s)$. Начальное состояние выбирается по начальной оценке объекта. Входной алфавит — это результаты изучения объекта по признакам. Выходной алфавит — это номера клас-

сов (или состояний). Автоматы A_2^i — это автоматы-задержки с нулевым начальным состоянием $i=1,\ldots,k-1$. На вход автомата A_2^1 подается выход автомата A_1 , далее автоматы соединены последовательно. Автомат A_3 имеет k входов — это выходы автоматов и A_1 , и A_2^i , $i=1,\ldots,k-1$. Таким образом, в момент времени t на вход автомата A_3 поступает информация о состоянии объекта в последние k моментов времени $t\geqslant k$. Автомат A_3 имеет s+1 состояние: s состояний соответствуют классам K_1,\ldots,K_s , и одно состояние конечное. Начальное состояние соответствует начальной оценке объекта. Если в момент времени t автомат может распознать объект, то он переходит в конечное состояние и выдает номер класса. Если распознать не может — то остается в том же начальном состоянии и выдает 0.

Изучается ряд вопросов.

- 1. Задать функции переходов и выходов для автоматов A_1 и A_3 таким образом, чтобы после оценивания объекта не более чем по N признакам процесс распознавания завершался. N задаётся в зависимости от конкретной задачи. Например, для оценивания знаний на экзамене можно брать $k=3,\,N=6$.
- 2. Сравниваются возможности такой системы автоматов при различной глубине памяти, т.е. при изменении количества автоматов-задержек.
- 3. Рассматриваются случаи, когда автомат A_1 имеет кроме основных s состояний, соответствующих классам K_1, \ldots, K_s , еще некоторые промежуточные состояния. Например, при оценке ответа на экзамене ставятся промежуточные баллы (ответ между 3 и 4).