Автоматизированная система реконструирования текстурированных 3D моделей человеческих лиц

Де Ванса Викрамаратне В. К.

acmdewansa@gmail.com

Москва, Московский государственный институт радиотехники, электроники и автоматики (технический университет)

Разработана система реконструкции фотореалистичных 3D моделей человеческих лиц, в состав которой входят цифровой фотоаппарат и проектор. Модель сканируется методом активной триангуляции с использованием шаблона Де Брюйна в качестве структурированной подсветки. Представлены результаты экспериментов.

Оптическая триангуляция

Проектор показывает тонкую прямую линию p, которая, проецируясь на сканируемый объект, становится 3D кривой. При фотографировании точка r этой кривой с координатами $[x\,y\,z]^{\rm T}$ проецируется в пиксель c с локальными координатами $[u\,v]^{\rm T}$. По известным c и p легко вычислить r. Задача сводится к пересечению луча l (множество точек, проецируемых фотоаппаратом в c) и плоскости π (множество точек, в которые проектор «отвещает» прямой p).

Калибровка камеры и проектора. Для определения уравнений луча l и плоскости π необходимо знать параметры камеры и проектора, в том числе их взаимное расположение. Zhang [1] описывает метод калибровки камеры, в котором плоскость с известными m характерными точками (локальные координаты: M_1, M_2, \ldots, M_m) фотографируется n раз в различных положениях относительно камеры. На i-й фотографии характерная точка M_j проецируется в пиксель m_{ij} . Параметры камеры \mathbf{A} (intrinsic), k_1 и k_2 (сферические искажения), \mathbf{R}_i (матрица поворотов, относительно плоскости на i-той фотографии), t_i (вектор сдвига на i-той фотографии) определяются путем минимизации функционала

$$\sum_{i=1}^{n} \sum_{j=1}^{m} ||m_{ij} - \check{m}_{ij}(\mathbf{A}, k_1, k_2, \mathbf{R}_i, t_i, M_j)||^2,$$

где \check{m}_{ij} — проекция точки M_j на i-м изображении, согласно математической модели камеры со сферическими искажениями. В разработанной системе данный метод адаптирован для калибровки камеры и проектора одновременно.

Проецируемый шаблон. Для эффективной реконструкции модели можно проецировать не одну тонкую линию p, а сразу k линий p_1,\ldots,p_k . Чем больше k, тем больше реконструируемых точек. Однако с ростом k

осложняется задача определения принадлежности пикселей фотографии линиям p_i . Используемый шаблон состоит из 125 цветных полос одинаковой ширины, как в [2]. Прямыми p_i считаются 124 границы между полосками. Полоски окрашены таким образом, что любая подпоследовательность из 3-х цветов встречается не более одного раза (последовательность Де Брюйна). В обзоре [3] данный шаблон показал наилучшие результаты в задаче реконструкции 3D модели по одному снимку.

Алгоритм реконструкции текстурированной 3D модели

Лицо помещается в поле зрения откалиброванных камеры и проектора. Подряд делаются два снимка: с подсветкой полосками (изображение I_1) и с подсветкой белым светом, для определения текстуры (изображение I_2).

- **Шаг 1. Удаление шума.** I_1 и I_2 обрабатываются фильтром Гаусса.
- **Шаг 2. Выделение мягких контуров.** Каждый сканлайн I_1 свертывается с маской вида $[a_1, a_2, \ldots, a_k, 0, -a_k, \ldots, -a_2, -a_1]$ для обнаружения участков, соответствующих линиям p_i . Данный метод оказался более эффективным для нашей задачи, чем Canny edge detector.
- **Шаг 3. Построение жестких границ.** Для локальных участков контуров находятся «центры масс», которые используются как опорные точки для построения жестких границ (субпиксельная точность), проходящих внутри мягких контуров.
- **Шаг 4. Нормализация цветов.** Для повышения надежности идентификации цветов, которые искажаются текстурой кожи, I_1 модифицируется таким образом, чтобы «вычесть» информацию о текстуре, хранящуюся в I_2 , и оставить «чистые» цвета проектора. Используется модификация алгоритма, описанного в [4].
- Шаг 5. Маркировка границ. Для каждого сканлайна, на основе анализа «чистых» цветов полос, определяется соответствие между жесткими границами и p_i . Используется модификация алгоритма многопроходного динамического программирования [2] с добавленной эвристикой, учитывающей, что сканируемый объект является nuyom.
- Шаг 6. Обработка маркированных границ. Все границы с одной и той же маркировкой p_i объединяются в линию, в которой заполняются разрывы и производится сглаживание фильтром Гаусса. Таким образом, результирующая модель получается гладкой и без разрывов.
- **Шаг 7. Построение 3D модели.** Полученные линии преобразуются в 3D кривые (p_i и c известны для каждой точки линии), на базе которых строится 3D поверхность лица. Текстурными координатами каждой точки r(x,y,z) является c.

Результаты

При использовании одной фотографии подсвеченного полосками лица с разрешением 1024×768 (и одной такой же фотографии, но с однотонной белой подсветкой) реконструированная 3D модель содержит более $30\,000$ точек.

Ошибка калибровки $\sum_{i=1}^n \sum_{j=1}^m \left\| m_{ij} - \check{m}_{ij}(\mathbf{A}, k_1, k_2, \mathbf{R}_i, t_i, M_j) \right\|$ составляет около 1 пикселя, что соответствует 0.03 мм на фронтальной плоскости сканируемого лица. Построенная текстурированная 3D модель позволяет генерировать фотореалистичные изображения лица с различных ракурсов.

Рис. 1. Слева фотография лица в анфас, подсвеченного цветными полосками. В центре и справа построенная текстурированная 3D модель.

Литература

- [1] Zhang Z. A flexible new technique for camera calibration // Pattern Analysis and Machine Intelligence, IEEE Transactions. $-2000.-\mathrm{V.}\,22$, No. $11-\mathrm{Pp.}\,1330-1334$.
- [2] Zhang Z., Curless B., Seitz S. M. Rapid shape acquisition using color structured light and multi-pass dynamic programming // The 1st IEEE Int'l Symposium on 3D Data Processing, Visualization, and Transmission. -2002. -Pp. 24–36.
- [3] Salvi J., Pags J., Battle J. Pattern Codification Strategies in Structured Light Systems // Pattern Recognition 37(4) — 2004. — Pp. 827–849.
- [4] Caspi D., Kiryati N., Shamir J. Range imaging with adaptive color structured light // IEEE Transactions on Pattern Analysis and Machine Intelligence archive. May 1998. Pp. 470-480.