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Preface

This volume is a spin-off edition derived from Signal and Image Processing for Remote
Sensing. It presents more advanced topics of image processing in remote sensing than
similar books in the area. The topics of image modeling, statistical image classifiers,
change detection, independent component analysis, vertex component analysis, image
fusion for better classification or segmentation, 2-D time series modeling, neural network
classifications, etc. are examined in this volume. Some unique topics like accuracy assess-
ment and information-theoretic measure of multiband images are presented. An em-
phasis is placed on the issues with synthetic aperture radar (SAR) images in many
chapters. Continued development on imaging sensors always presents new opportunities
and challenges on image processing for remote sensing. The hyperspectral imaging
sensor is a good example here. We believe this volume not only presents the most up-
to-date developments of image processing for remote sensing but also suggests to readers
the many challenging problems ahead for further study.

Original Preface from Signal and Image Processing for Remote Sensing

Both signal processing and image processing have been playing increasingly important
roles in remote sensing. While most data from satellites are in image forms and thus
image processing has been used most often, signal processing can contribute significantly
in extracting information from the remotely sensed waveforms or time series data. In
contrast to other books in this field which deal almost exclusively with the image
processing for remote sensing, this book provides a good balance between the roles of
signal processing and image processing in remote sensing. The book covers mainly
methodologies of signal processing and image processing in remote sensing. Emphasis
is thus placed on the mathematical techniques which we believe will be less changed as
compared to sensor, software and hardware technologies. Furthermore, the term ““remote
sensing”” is not limited to the problems with data from satellite sensors. Other sensors
which acquire data remotely are also considered. Thus another unique feature of the book
is the coverage of a broader scope of the remote sensing information processing problems
than any other book in the area.

The book is divided into two parts [now published as separate volumes under the
following titles]. Part I, Signal Processing for Remote Sensing, has 12 chapters and Part II
[comprising the present volume], [mage Processing for Remote Sensing, has 16 chapters. The
chapters are written by leaders in the field. We are very fortunate, for example, to have
Dr. Norden Huang, inventor of the Huang-Hilbert transform, along with Dr. Steven
Long, to write a chapter on the application of the transform to remote sensing problem,
and Dr. Enders A. Robinson, who has made many major contributions to geophysical
signal processing for over half a century, to write a chapter on the basic problem of
constructing seismic images by ray tracing.

In Part I, following Chapter 1 by Drs. Long and Huang, and my short Chapter 2 on the
roles of statistical pattern recognition and statistical signal processing in remote sensing,
we start from a very low end of the electromagnetic spectrum. Chapter 3 considers the
classification of infrasound at a frequency range of 0.001 Hz to 10 Hz by using a parallel
bank neural network classifier and a 11-step feature selection process. The >90% correct
classification rate is impressive for this kind of remote sensing data. Chapter 4 through



Chapter 6 deal with seismic signal processing. Chapter 4 provides excellent physical
insights on the steps for construction of digital seismic images. Even though the seismic
image is an image, this chapter is placed in Part I as seismic signals start as waveforms.
Chapter 5 considers the singular value decomposition of a matrix data set from scalar-
sensors arrays, which is followed by independent component analysis (ICA) step to relax
the unjustified orthogonality constraint for the propagation vectors by imposing a
stronger constraint of fourth-order independence of the estimated waves. With an initial
focus of the use of ICA in seismic data and inspired by Dr. Robinson’s lecture on seismic
deconvolution at the 4th International Symposium, 2002, on Computer Aided Seismic
Analysis and Discrimination, Mr. Zhenhai Wang has examined approaches beyond ICA
for improving seismic images. Chapter 6 is an effort to show that factor analysis, as an
alternative to stacking, can play a useful role in removing some unwanted components in
the data and thereby enhancing the subsurface structure as shown in the seismic images.
Chapter 7 on Kalman filtering for improving detection of landmines using electromag-
netic signals, which experience severe interference, is another remote sensing problem of
higher interest in recent years. Chapter 8 is a representative time series analysis problem
on using meteorological and remote sensing indices to monitor vegetation moisture
dynamics. Chapter 9 actually deals with the image data for digital elevation model but
is placed in Part I mainly because the prediction error (PE) filter is originated from the
geophysical signal processing. The PE filter allows us to interpolate the missing parts of
an image. The only chapter that deals with the sonar data is Chapter 10, which shows that
a simple blind source separation algorithm based on the second-order statistics can be
very effective to remove reverberations in active sonar data. Chapter 11 and Chapter 12
are excellent examples of using neural networks for retrieval of physical parameters from
the remote sensing data. Chapter 12 further provides a link between signal and image
processing as the principal component analysis and image sharpening tools employed are
exactly what are needed in Part IL

With a focus on image processing of remote sensing images, Part II begins with Chapter
13 [Chapter 1 of the present volume] that is concerned with the physics and mathematical
algorithms for determining the ocean surface parameters from synthetic aperture radar
(SAR) images. Mathematically Markov random field (MRF) is one of the most useful
models for the rich contextual information in an image. Chapter 14 [now Chapter 2]
provides a comprehensive treatment of MRF-based remote sensing image classification.
Besides an overview of previous work, the chapter describes the methodological issues
involved and presents results of the application of the technique to the classification of
real (both single-date and multitemporal) remote sensing images. Although there are
many studies on using an ensemble of classifiers to improve the overall classification
performance, the random forest machine learning method for classification of hyperspec-
tral and multisource data as presented in Chapter 15 [now Chapter 3] is an excellent
example of using new statistical approaches for improved classification with the remote
sensing data. Chapter 16 [now Chapter 4] presents another machine learning method,
AdaBoost, to obtain robustness property in the classifier. The chapter further considers
the relations among the contextual classifier, MRF-based methods, and spatial boosting.
The following two chapters are concerned with different aspects of the change detection
problem. Change detection is a uniquely important problem in remote sensing as the
images acquired at different times over the same geographical area can be used in the
areas of environmental monitoring, damage management, and so on. After discussing
change detection methods for multitemporal SAR images, Chapter 17 [now Chapter 5]
examines an adaptive scale-driven technique for change detection in medium resolu-
tion SAR data. Chapter 18 [now Chapter 6] evaluates the Wiener filter-based method,



Mahalanobis distance, and subspace projection methods of change detection, with the
change detection performance illustrated by receiver operating characteristics (ROC)
curves. In recent years, ICA and related approaches have presented many new potentials
in remote sensing information processing. A challenging task underlying many hyper-
spectral imagery applications is decomposing a mixed pixel into a collection of reflec-
tance spectra, called endmember signatures, and the corresponding abundance fractions.
Chapter 19 [now Chapter 7] presents a new method for unsupervised endmember
extraction called vertex component analysis (VCA). The VCA algorithms presented
have better or comparable performance as compared to two other techniques but require
less computational complexity. Other useful ICA applications in remote sensing include
feature extraction, and speckle reduction of SAR images. Chapter 20 [now Chapter 8]
presents two different methods of SAR image speckle reduction using ICA, both making
use of the FastICA algorithm. In two-dimensional time series modeling, Chapter 21 [now
Chapter 9] makes use of a fractionally integrated autoregressive moving average
(FARIMA) analysis to model the mean radial power spectral density of the sea SAR
imagery. Long-range dependence models are used in addition to the fractional sea surface
models for the simulation of the sea SAR image spectra at different sea states, with and
without oil slicks at low computational cost.

Returning to the image classification problem, Chapter 22 [now Chapter 10] deals with
the topics of pixel classification using Bayes classifier, region segmentation guided by
morphology and split-and-merge algorithm, region feature extraction, and region classi-
fication.

Chapter 23 [now Chapter 11] provides a tutorial presentation of different issues of data
fusion for remote sensing applications. Data fusion can improve classification and for the
decision level fusion strategies, four multisensor classifiers are presented. Beyond the
currently popular transform techniques, Chapter 24 [now Chapter 12] demonstrates that
Hermite transform can be very useful for noise reduction and image fusion in remote
sensing. The Hermite transform is an image representation model that mimics some of the
important properties of human visual perception, namely local orientation analysis and
the Gaussian derivative model of early vision. Chapter 25 [now Chapter 13] is another
chapter that demonstrates the importance of image fusion to improving sea ice classifi-
cation performance, using backpropagation trained neural network and linear discrimin-
ation analysis and texture features. Chapter 26 [now Chapter 14] is on the issue of
accuracy assessment for which the Bradley-Terry model is adopted. Chapter 27 [now
Chapter 15] is on land map classification using support vector machine, which has been
increasingly popular as an effective classifier. The land map classification classifies the
surface of the Earth into categories such as water area, forests, factories or cities. Finally,
with lossless data compression in mind, Chapter 28 [now Chapter 16] focuses on infor-
mation-theoretic measure of the quality of multi-band remotely sensed digital images.
The procedure relies on the estimation of parameters of the noise model. Results on image
sequences acquired by AVIRIS and ASTER imaging sensors offer an estimation of the
information contents of each spectral band.

With rapid technological advances in both sensor and processing technologies, a book
of this nature can only capture certain amount of current progress and results. However,
if past experience offers any indication, the numerous mathematical techniques presented
will give this volume a long lasting value.

The sister volumes of this book are the other two books edited by myself. One is
Information Processing for Remote Sensing and the other is Frontiers of Remote Sensing
Information Processing, both published by World Scientific in 1999 and 2003, respectively.
I am grateful to all contributors of this volume for their important contribution and,



in particular, to Dr. ]J.S. Lee, S. Serpico, L. Bruzzone and S. Omatu for chapter contribu-
tions to all three volumes. Readers are advised to go over all three volumes for a more
complete information on signal and image processing for remote sensing.

C. H. Chen
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2 Image Processing for Remote Sensing

1.1 Introduction

Selected methods that use synthetic aperture radar (SAR) image data to remotely sense
ocean surfaces are described in this chapter. Fully polarimetric SAR radars provide much
more usable information than conventional single-polarization radars. Algorithms, pre-
sented here, to measure directional wave spectra, wave slopes, wave—current interactions,
and current-driven surface features use this additional information.

Polarimetric techniques that measure directional wave slopes and spectra with data
collected from a single aircraft, or satellite, collection pass are described here. Conven-
tional single-polarization backscatter cross-section measurements require two orthogonal
passes and a complex SAR modulation transfer function (MTF) to determine vector slopes
and directional wave spectra.

The algorithm to measure wave spectra is described in Section 1.2. In the azimuth
(flight) direction, wave-induced perturbations of the polarimetric orientation angle are
used to sense the azimuth component of the wave slopes. In the orthogonal range
direction, a technique involving an alpha parameter from the well-known Cloude—-Pottier
entropy/anisotropy/averaged alpha (H/A/&) polarimetric decomposition theorem is
used to measure the range slope component. Both measurement types are highly sensitive
to ocean wave slopes and are directional. Together, they form a means of using polari-
metric SAR image data to make complete directional measurements of ocean wave slopes
and wave slope spectra.

NASA Jet Propulsion Laboratory airborne SAR (AIRSAR) P-, L-, and C-band data
obtained during flights over the coastal areas of California are used as wave-field
examples. Wave parameters measured using the polarimetric methods are compared with
those obtained using in situ NOAA National Data Buoy Center (NDBC) buoy products.

In a second topic (Section 1.3), polarization orientation angles are used to remotely
sense ocean wave slope distribution changes caused by ocean wave—current interactions.
The wave—current features studied include surface manifestations of ocean internal
waves and wave interactions with current fronts.

A model [1], developed at the Naval Research Laboratory (NRL), is used to determine
the parametric dependencies of the orientation angle on internal wave current, wind-
wave direction, and wind-wave speed. An empirical relation is cited to relate orientation
angle perturbations to the underlying parametric dependencies [1].

A third topic (Section 1.4) deals with the detection and classification of biogenic slick
fields. Various techniques, using the Cloude-Pottier decomposition and Wishart clas-
sifier, are used to classify the slicks. An application utilizing current-driven ocean
features, marked by slick patterns, is used to map spiral eddies. Finally, a related
technique, using the polarimetric orientation angle, is used to segment slick fields from
ocean wave slopes.

1.2 Measurement of Directional Slopes and Wave Spectra
1.2.1 Single Polarization versus Fully Polarimetric SAR Techniques

SAR systems conventionally use backscatter intensity-based algorithms [2] to measure
physical ocean wave parameters. SAR instruments, operating at a single-polarization,
measure wave-induced backscatter cross section, or sigma-0, modulations that can be
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developed into estimates of surface wave slopes or wave spectra. These measurements,
however, require a parametrically complex MTF to relate the SAR backscatter meas-
urements to the physical ocean wave properties [3].

Section 1.2.3 through Section 1.2.6 outline a means of using fully polarimetric SAR
(POLSAR) data with algorithms [4] to measure ocean wave slopes. In the Fourier-trans-
form domain, this orthogonal slope information is used to estimate a complete directional
ocean wave slope spectrum. A parametrically simple measurement of the slope is made
by using POLSAR-based algorithms.

Modulations of the polarization orientation angle, 6, are largely caused by waves
traveling in the azimuth direction. The modulations are, to a lesser extent, also affected
by range traveling waves. A method, originally used in topographic measurements [5],
has been applied to the ocean and used to measure wave slopes. The method measures
vector components of ocean wave slopes and wave spectra. Slopes smaller than 1° are
measurable for ocean surfaces using this method.

An eigenvector or eigenvalue decomposition average parameter &, described in Ref.
[6], is used to measure wave slopes in the orthogonal range direction. Waves in the
range direction cause modulation of the local incidence angle ¢, which, in turn, changes
the value of &. The alpha parameter is ““roll-invariant.”” This means that it is not affected
by slopes in the azimuth direction. Likewise, for ocean wave measurements, the orien-
tation angle 6 parameter is largely insensitive to slopes in the range direction. An
algorithm employing both (@, 6) is, therefore, capable of measuring slopes in any
direction. The ability to measure a physical parameter in two orthogonal directions
within an individual resolution cell is rare. Microwave instruments, generally, must
have a two-dimensional (2D) imaging or scanning capability to obtain information in
two orthogonal directions.

Motion-induced nonlinear “velocity-bunching” effects still present difficulties for wave
measurements in the azimuth direction using POLSAR data. These difficulties are dealt
with by using the same proven algorithms [3,7] that reduce nonlinearities for single-
polarization SAR measurements.

1.2.2 Single-Polarization SAR Measurements of Ocean Surface Properties

SAR systems have previously been used for imaging ocean features such as surface
waves, shallow-water bathymetry, internal waves, current boundaries, slicks, and ship
wakes [8]. In all of these applications, the modulation of the SAR image intensity by the
ocean feature makes the feature visible in the image [9]. When imaging ocean surface
waves, the main modulation mechanisms have been identified as tilt modulation, hydro-
dynamic modulation, and velocity bunching [2]. Tilt modulation is due to changes in the
local incidence angle caused by the surface wave slopes [10]. Tilt modulation is strongest
for waves traveling in the range direction. Hydrodynamic modulation is due to the
hydrodynamic interactions between the long-scale surface waves and the short-scale
surface (Bragg) waves that contribute most of the backscatter at moderate incidence
angles [11]. Velocity bunching is a modulation process that is unique to SAR imaging
systems [12]. It is a result of the azimuth shifting of scatterers in the image plane, owing
to the motion of the scattering surface. Velocity bunching is the highest for azimuth
traveling waves.

In the past, considerable effort had gone into retrieving quantitative surface wave
information from SAR images of ocean surface waves [13]. Data from satellite SAR
missions, such as ERS 1 and 2 and RADARSAT 1 and 2, had been used to estimate
surface wave spectra from SAR image information. Generally, wave height and wave
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slope spectra are used as quantitative overall descriptors of the ocean surface wave
properties [14]. Over the years, several different techniques have been developed for
retrieving wave spectra from SAR image spectra [7,15,16]. Linear techniques, such as
those having a linear MTF, are used to relate the wave spectrum to the image
spectrum. Individual MTFs are derived for the three primary modulation mechanisms.
A transformation based on the MTF is used to retrieve the wave spectrum from the
SAR image spectrum. Since the technique is linear, it does not account for any non-
linear processes in the modulation mechanisms. It has been shown that SAR image
modulation is nonlinear under certain ocean surface conditions. As the sea state
increases, the degree of nonlinear behavior generally increases. Under these conditions,
the linear methods do not provide accurate quantitative estimates of the wave spectra
[15]. Thus, the linear transfer function method has limited utility and can be used as a
qualitative indicator. More accurate estimates of wave spectra require the use of non-
linear inversion techniques [15].

Several nonlinear inversion techniques have been developed for retrieving wave
spectra from SAR image spectra. Most of these techniques are based on a technique
developed in Ref. [7]. The original method used an iterative technique to estimate the
wave spectrum from the image spectrum. Initial estimates are obtained using a linear
transfer function similar to the one used in Ref. [15]. These estimates are used as inputs
in the forward SAR imaging model, and the revised image spectrum is used to
iteratively correct the previous estimate of the wave spectra. The accuracy of this
technique is dependent on the specific SAR imaging model. Improvements to this
technique [17] have incorporated closed-form descriptions of the nonlinear transfer
function, which relates the wave spectrum to the SAR image spectrum. However,
this transfer function also has to be evaluated iteratively. Further improvements to
this method have been suggested in Refs. [3,18]. In this method, a cross-spectrum is
generated between different looks of the same ocean wave scene. The primary advan-
tage of this method is that it resolves the 180° ambiguity [3,18] of the wave direction.
This method also reduces the effects of speckle in the SAR spectrum. Methods that
incorporate additional a posteriori information about the wave field, which improves
the accuracy of these nonlinear methods, have also been developed in recent years [19].

In all of the slope-retrieval methods, the one nonlinear mechanism that may completely
destroy wave structure is velocity bunching [3,7]. Velocity bunching is a result of moving
scatterers on the ocean surface either bunching or dilating in the SAR image domain. The
shifting of the scatterers in the azimuth direction may, in extreme conditions, result in the
destruction of the wave structure in the SAR image.

SAR imaging simulations were performed at different range-to-velocity (R/V) ratios to
study the effect of velocity bunching on the slope-retrieval algorithms. When the (R/V)
ratio is artificially increased to large values, the effects of velocity bunching are expected
to destroy the wave structure in the slope estimates. Simulations of the imaging process
for a wide range of radar-viewing conditions indicate that the slope structure is preserved
in the presence of moderate velocity-bunching modulation. It can be argued that for
velocity bunching to affect the slope estimates, the (R/V) ratio has to be significantly
larger than 100s. The two data sets discussed here are designated ““Gualala River’” and
““San Francisco.” The Gualala river data set has the longest waves and it also produces the
best results. The R/V ratio for the AIRSAR missions was 59s (Gualala) and 55s (San
Francisco). These values suggest that the effects of velocity bunching are present, but are
not sufficiently strong to significantly affect the slope-retrieval process. However, for
spaceborne SAR imaging applications, where the (R/V) ratio may be greater than 100s,
the effects of velocity bunching may limit the utility of all methods, especially in high
sea states.
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1.2.3 Measurement of Ocean Wave Slopes Using Polarimetric SAR Data

In this section, the techniques that were developed for the measurement of ocean surface
slopes and wave spectra using the capabilities of fully polarimetric radars are discussed.
Wave-induced perturbations of the polarization orientation angle are used to directly
measure slopes for azimuth traveling waves. This technique is accurate for scattering
from surface resolution cells where the sea return can be represented as a two-scale
Bragg-scattering process.

1.2.3.1 Orientation Angle Measurement of Azimuth Slopes

It has been shown [5] that by measuring the orientation angle shift in the polarization
signature, one can determine the effects of the azimuth surface tilts. In particular, the shift in
the orientation angle is related to the azimuth surface tilt, the local incidence angle, and, to a
lesser degree, the range tilt. This relationship is derived [20] and independently verified [6] as

tan w
tanf = 1.1
an sin ¢ — tan y cos ¢ (1)

where 6, tan w, tan vy, and ¢ are the shifts in the orientation angle, the azimuth slope, the
ground range slope, and the radar look angle, respectively. According to Equation 1.1, the
azimuth tilts may be estimated from the shift in the orientation angle, if the look angle and
range tilt are known.

The orthogonal range slope tan vy can be estimated using the value of the local incidence
angle associated with the alpha parameter for each pixel. The azimuth slope tan w and the
range slope tan y provide complete slope information for each image pixel.

For the ocean surface at scales of the size of the AIRSAR resolution cell (6.6 m x 8.2 m),
the averaged tilt angles are small and the denominator in Equation 1.1 may be approxi-
mated by sin ¢ for a wide range of look angles, cos ¢, and ground range slope, tan v,
values. Under this approximation, the ocean azimuth slope, tan w, is written as

tanw = (sin¢) - tan (1.2)

The above equation is important because it provides a direct link between polarimetric SAR
measurable parameters and physical slopes on the ocean surface. This estimation of ocean slopes
relies only on (1) the knowledge of the radar look angle (generally known from the SAR viewing
geometry) and (2) the measurement of the wave-perturbed orientation angle. In ocean areas
where the average scattering mechanism is predominantly tilted-Bragg scatter, the orientation
angle can be measured accurately for angular changes <1°, as demonstrated in Ref. [20].

POLSAR data can be represented by the scattering matrix for single-look complex data
and by the Stokes matrix, the covariance matrix, or the coherency matrix for multi-look
data. An orientation angle shift causes rotation of all these matrices about the line of sight.
Several methods have been developed to estimate the azimuth slope-induced orientation
angles for terrain and ocean applications. The ““polarization signature maximum” method
and the “circular polarization” method have proven to be the two most effective methods.
Complete details of these methods and the relation of the orientation angle to orthogonal
slopes and radar parameters are given [21,22].

1.2.3.2 Orientation Angle Measurement Using the Circular-Pol Algorithm

Image processing was done with both the polarization signature maximum and the
circular polarization algorithms. The results indicate that for ocean images a sign-
ificant improvement in wave visibility is achieved when a circular polarization algor-
ithm is chosen. In addition to this improvement, the circular polarization algorithm is
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computationally more efficient. Therefore, the circular polarization algorithm method
was chosen to estimate orientation angles. The most sensitive circular polarization esti-
mator [21], which involves RR (right-hand transmit, right-hand receive) and LL (left-hand
transmit, left-hand receive) terms, is

*
0 = [Arg((SrrSyL) + 71/4 (13)
A linear-pol basis has a similar transmit-and-receive convention, but the terms (HH, VV,

HV, VH) involve horizontal (H) and vertical (V) transmitted, or received, components.
The known relations between a circular-pol basis and a linear-pol basis are

Srr = (Suu — Svv +125nuv)/2

. (1.4)
StL = (Svv — Sun +i25hv)/2
Using the above equation, the Arg term of Equation 1.3 can be written as
* _4Re(<(SHH - SVV)S;V>)
6 = Arg((SgrS,,)) = tan"' (1.5)

—(|Sun — Svv[*) + 4(Suv[?)

The above equation gives the orientation angle, 6, in terms of three of the terms of the
linear-pol coherency matrix. This algorithm has been proven to be successful in Ref. [21].
An example of the accuracy is cited from related earlier studies involving wave—current
interactions [1]. In these studies, it has been shown that small wave slope asymmetries
could be accurately detected as changes in the orientation angle. These small asymmetries
had been predicted by theory [1] and their detection indicates the sensitivity of the
circular-pol orientation angle measurement.

1.2.4 Ocean Wave Spectra Measured Using Orientation Angles

NASA/JPL/AIRSAR data were taken (1994) at L-band imaging a northern California
coastal area near the town of Gualala (Mendocino County) and the Gualala River. This
data set was used to determine if the azimuth component of an ocean wave spectrum
could be measured using orientation angle modulation. The radar resolution cell had
dimensions of 6.6 m (range direction) and 8.2 m (azimuth direction), and 3 x 3 boxcar
averaging was done to the data inputted into the orientation angle algorithms.

Figure 1.1 is an L-band, VV-pol, pseudo color-coded image of a northern California
coastal area and the selected measurement study site. A wave system with an estimated
dominant wavelength of 157 m is propagating through the site with a wind-wave
direction of 306° (estimates from wave spectra, Figure 1.4). The scattering geometry for
a single average tilt radar resolution cell is shown in Figure 1.2. Modulations in the
polarization orientation angle induced by azimuth traveling ocean waves in the study
area are shown in Figure 1.3a and a histogram of the orientation angles is given in Figure
1.3b. An orientation angle spectrum versus wave number for azimuth direction waves
propagating in the study area is given in Figure 1.4. The white rings correspond to ocean
wavelengths of 50, 100, 150, and 200 m. The dominant 157-m wave is propagating at a
heading of 306°. Figure 1.5a and Figure 1.5b give plots of spectral intensity versus wave
number (a) for wave-induced orientation angle modulations and (b) for single-polariza-
tion (VV-pol)-intensity modulations. The plots are of wave spectra taken in the direction
that maximizes the dominant wave peak. The orientation angle-dominant wave peak
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Northern
California

Gualala
River

Range

Flight direction (azimuth)

FIGURE 1.1 (See color insert following page 240.)
An L-band, VV-pol, AIRSAR image, of northern California coastal waters (Gualala River dataset), showing ocean
waves propagating through a study-site box.

(Figure 1.5a) has a significantly higher signal and background ratio than the conventional
intensity-based VV-pol-dominant wave peak (Figure 1.5b).

Finally, the orientation angles measured within the study sites were converted into
azimuth direction slopes using an average incidence angle and Equation 1.2. From the
estimates of these values, the ocean rms azimuth slopes were computed. These values are
given in Table 1.1.
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FIGURE 1.2
Geometry of scattering from a single, tilted, resolution cell. In the Gualala River dataset, the resolution cell has
dimensions 6.6 m (range direction) and 8.2m (azimuth direction).

Study area: orientation angles

FIGURE 1.3
(a) Image of modulations in the orientation angle, 6, in the study site and (b) a histogram of the distribution of

study-site 6 values.
(continued)
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1.2.5 Two-Scale Ocean-Scattering Model: Effect on the Orientation Angle Measurement

In Section 1.2.3.2, Equation 1.5 is given for the orientation angle. This equation gives the
orientation angle 0 as a function of three terms from the polarimetric coherency matrix T.
Scattering has only been considered as occurring from a slightly rough, tilted surface
equal to or greater than the size of the radar resolution cell (see Figure 1.2). The surface is
planar and has a single tilt ;. This section examines the effects of having a distribution of
azimuth tilts, p (¢), within the resolution cell, rather than a single averaged tilt.

For single-look or multi-look processed data, the coherency matrix is defined as

(ISn+Swi?) (Stas1 + Svw) (St — Swv)*) 2((Srart + Swv)Siy )
T = (kk*") :% ((Sun — Sww)(Suu + Sw)*) <|5HH - 5vv|2> 2((Stu — Svv)Sy )
2(Spv(Sum + Svv)*) 2(Suv(Suu — Svv)*) 4<|SHV|2>
(1.6)

1 | Smu +5Svwv
with k = — | Sy — Svv
V2| sy

We now follow the approach of Cloude and Pottier [23]. The composite surface consists of
flat, slightly rough “facets,” which are tilted in the azimuth direction with a distribution of tilts,

p(e): )
B le—s[<B
={ 28
Plo) { 0 otherwise 1.7)

where s is the average surface azimuth tilt of the entire radar resolution cell.
The effect on T of having both (1) a mean bias azimuthal tilt 5 and (2) a distribution
of azimuthal tilts 8 has been calculated in Ref. [22] as

A Bsinc(28) cos 26, —Bsin¢(2) sin 265
T = | B*sinc(2B)cos26s 2C(sin’26s + sinc(4B) cos 46s) C(1 —2sinc(4B))sin46,
—B*sinc(2B) sin 26, C(1 —2sinc(4B)) sin 46y 2C(cos? 26, — sin c(4) cos 46;)

(1.8)
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FIGURE 1.4 (See color insert following page 240.)

Orientation angle spectra versus wave number for azimuth direction waves propagating through the study site.
The white rings correspond to 50, 100, 150, and 200 m. The dominant wave, of wavelength 157 m, is propagating
at a heading of 306°.

where sin ¢(x) is = sin(x)/x and

A= |Sun + Swl’, B = (Sun + Sw)(Si — Sty),  C = 0.5|Sum — Swv[?
Equation 1.8 reveals the changes due to the tilt distribution (8) and bias (6;) that occur in
all terms, except in the term A = |Sgpy + SVVIZ, which is roll-invariant. In the correspond-

ing expression for the orientation angle, all of the other terms, except the denominator
term (|Syp — Syv|?), are modified

—4R€(<(SHH — SVV)S;IV» > (1.9)

—(|Suu — Svv[?) + 4(|Sav[?)
From Equation 1.8 and Equation 1.9, it can be determined that the exact estimation of the

orientation angle 6 becomes more difficult as the distribution of ocean tilts 8 becomes
stronger and wider because the ocean surface becomes progressively rougher.

0 = Arg(<SRRS;fL>) =tan”! (
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FIGURE 1.5
Plots of spectral intensity versus wave number (a) for wave-induced orientation angle modulations
and (b) for VV-pol intensity modulations. The plots are taken in the propagation direction of the dominant
wave (306°).

1.2.6 Alpha Parameter Measurement of Range Slopes

A second measurement technique is needed to remotely sense waves that have significant
propagation direction components in the range direction. The technique must be more
sensitive than current intensity-based techniques that depend on tilt and hydrodynamic
modulations. Physically based POLSAR measurements of ocean slopes in the range
direction are achieved using a technique involving the “alpha” parameter of the
Cloude-Pottier polarimetric decomposition theorem [23].

1.2.6.1 Cloude-Pottier Decomposition Theorem and the Alpha Parameter

The Cloude-Pottier entropy, anisotropy, and the alpha polarization decomposition the-
orem [23] introduce a new parameterization of the eigenvectors of the 3 x 3 averaged
coherency matrix (|T]) in the form
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TABLE 1.1

Northern California: Gualala Coastal Results

In Situ Measurement Instrument

Bodega Bay, CA 3-m Point Arena, CA  Orientation Angle Alpha Angle
Parameter Discus Buoy 46013  Wind Station Method Method
Dominant wave 10.0 N/A 10.03 From dominant  10.2 From dominant
period (s) wave number wave number
Dominant 156 From period, N/A 157 From wave 162 From wave
wavelength (m) depth spectra spectra
Dominant wave 320 Est. from 284 Est. from 306 From wave 306 From wave
direction (°) wind direction wind direction  spectra spectra
rms slopes azimuth  N/A N/A 1.58 N/A
direction (°)
rms slopes range N/A N/A N/A 1.36
direction (°)
Estimate of wave 2.4 Significant N/A 2.16 Est. from rms 1.92 Est. from rms
height (m) wave height slope, wave number  slope, wave number

Date: 7/15/94; data start time (UTC): 20:04:44 (BB, PA), 20:02:98 (AIRSAR); wind speed: 1.0m/s (BB), 2.9m/s
(PA) Mean = 1.95m/s; wind direction: 320° (BB), 284° (PA), mean = 302°; Buoy: “Bodega Bay” (46013) = BB;
location: 38.23 N 123.33 W; water depth: 122.5m; wind station: “‘Point Arena”” (PTAC - 1) = PA; location: 38.96°
N, 123.74 W; study-site location: 38°39.6' N, 123°35.8' W.

A0 0
(Th=[Us]-| 0 Ay O |- [Us]*" (1.10)
0 0 Az
where
cos aj cos apel®2 cos a3l

[Us] = & | sina; cos B1e®  sinay cos B,e®  sin az cos Byel® (1.11)

sinaj sin Be”  sina, sinB,e/”2  sin ajsin Byel”s
The average estimate of the alpha parameter is
a = Pia; + Pras + Psas (1.12)

where
Aj

=3
Z;’:l Aj

i

The individual alphas are for the three eigenvectors and the Ps are the probabilities
defined with respect to the eigenvalues. In this method, the average alpha is used and is,
for simplicity, defined as & = a. For the ocean backscatter, the contributions to the
average alpha are dominated, however, by the first eigenvalue or eigenvector term.
The alpha parameter, developed from the Cloude-Pottier polarimetric scattering
decomposition theorem [23], has desirable directional measurement properties. It is
(1) roll-invariant in the azimuth direction and (2) in the range direction, it is highly
sensitive to wave-induced modulations of ¢ in the local incidence angle ¢. Thus, the
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alpha parameter is well suited for measuring wave components traveling in the
range direction, and discriminates against wave components traveling in the azimuth
direction.

1.2.6.2 Alpha Parameter Sensitivity to Range Traveling Waves

The alpha angle sensitivity to range traveling waves may be estimated using the small
perturbation scattering model (SPSM) as a basis. For flat, slightly rough scattering areas
that can be characterized by Bragg scattering, the scattering matrix has the form

o SHH 0
s_{ 0 va} (1.14)

Bragg-scattering coefficients Syy and Sy are given by

cos ¢; — 1/ &, — sin’ ¢,

7 and Sy — &= 1 sin ¢; — &,(1 + sin* $,))

Sun = ’
.2
cos ¢; + m <é‘r cos ¢; + m> (1.15)

The alpha angle is defined such that the eigenvectors of the coherency matrix T are
parameterized by a vector k as
cosa
k = | sina cos Be®

sin a sin Bel”

(1.16)

For Bragg scattering, one may assume that there is only one dominant eigenvector
(depolarization is negligible) and the eigenvector is given by

Svv + Suu

k= | Syv — Sun
0 (1.17)
Since there is only one dominant eigenvector, for Bragg scattering, « = ay. For a

horizontal, slightly rough resolution cell, the orientation angle 8 = 0, and 6 may be set
to zero. With these constraints, comparing Equation 1.16 and Equation 1.17 yields

tana = % (1.18)
For ¢ — oo,
Syv =1+sin’ ¢, and Syy = cos? ¢; (1.19)
which yields
tana = sin® ¢; (1.20)

Figure 1.6 shows the alpha angle as a function of incidence angle for ¢ — oo (blue) and
for (red) & = 80-70j, which is a representative dielectric constant of sea water. The
sensitivity to alpha values to incidence angle changes (this is effectively the polarimetric
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FIGURE 1.6 (See color insert following page 240.)
Small perturbation model dependence of alpha on the incidence angle. The red curve is for a dielectric constant
representative of sea water (80-70j) and the blue curve is for a perfectly conducting surface.

MTF) as the range slope estimation is dependent on the derivative of « with respect to ¢;.
For e — o0
Aa  sin2¢,
Ad; 1+ sin* ¢,
Figure 1.7 shows this curve (blue) and the exact curve for ¢ = 80-70j (red). Note that for

the typical AIRSAR range of incidence angles (20-60°), across the swath, the effective MTF
is high (>0.5).

(1.21)

1.2.6.3 Alpha Parameter Measurement of Range Slopes and Wave Spectra

Model studies [6] result in an estimate of what the parametric relation « versus the
incidence angle ¢ should be for an assumed Bragg-scatter model. The sensitivity (i.e.,
the slope of the curve of a(¢)) was large enough (Figure 1.6) to warrant investigation
using real POLSAR ocean backscatter data.

In Figure 1.8a, a curve of « versus the incidence angle ¢ is given for a strip of Gualala
data in the range direction that has been averaged 10 pixels in the azimuth direction. This
curve shows a high sensitivity for the slope of a(¢). Figure 1.8b gives a histogram of the
frequency of occurrence of the alpha values.

The curve of Figure 1.8a was smoothed by utilizing a least-square fit of the a(¢) data to
a third-order polynomial function. This closely fitting curve was used to transform the o
values into corresponding incidence angle ¢ perturbations. Pottier [6] used a model-based
approach and fitted a third-order polynomial to the a(¢) (red curve) of Figure 1.6 instead
of using the smoothed, actual, image a(¢) data. A distribution of ¢ values has been made
and the rms range slope value has been determined. The rms range slope values for the
data sets are given in Table 1.1 and Table 1.2.
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Finally, to measure an alpha wave spectrum, an image of the study area is formed with the
mean of a(¢) removed line by line in the range direction. An FFT of the study area results in
the wave spectrum that is shown in Figure 1.9. The spectrum of Figure 1.9 is an alpha
spectrum in the range direction. It can be converted to a range direction wave slope
spectrum by transforming the slope values obtained from the smoothed alpha, a(¢), values.

Alpha (deg)

0 P dd . PR L PR PR PV SR WY P
20 30 40 50 60
Incidence angle (deg)

FIGURE 1.8
Empirical determination of the (a) sensitivity of the alpha parameter to the radar incidence angle (for Gualala

River data) and (b) a histogram of the alpha values occurring within the study site.
(continued)
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FIGURE 1.8 (continued)
(b) a histogram of the alpha values occurring within the study site.

1.2.7 Measured Wave Properties and Comparisons with Buoy Data

The ocean wave properties estimated from the L- and P-band SAR data sets and the
algorithms are the (1) dominant wavelength, (2) dominant wave direction, (3) rms slopes
(azimuth and range), and (4) average dominant wave height. The NOAA NDBC buoys
provided data on the (1) dominant wave period, (2) wind speed and direction, (3)
significant wave height, and (4) wave classification (swell and wind waves).

Both the Gualala and the San Francisco data sets involved waves classified as swell.
Estimates of the average wave period can be determined either from buoy data or from
the SAR-determined dominant wave number and water depth (see Equation 1.22).

The dominant wavelength and direction are obtained from the wave spectra (see Figure
1.4 and Figure 1.9). The rms slopes in the azimuth direction are determined from the
distribution of orientation angles converted to slope angles using Equation 1.2. The rms
slopes in the range direction are determined by the distribution of alpha angles converted
to slope angles using values of the smoothed curve fitted to the data of Figure 1.8a.

Finally, an estimate of the average wave height, Hy, of the dominant wave was made
using the peak-to-trough rms slope in the propagation direction S,,s and the dominant
wavelength A 4. The estimated average dominant wave height was then determined from
tan (Syms) = Ha/(Aa/2). This average dominant wave height estimate was compared with
the (related) significant wave height provided by the NDBC buoy. The results of the
measurement comparisons are given in Table 1.1 and Table 1.2.

1.2.7.1 Coastal Wave Measurements: Gualala River Study Site

For the Gualala River data set, parameters were calculated to characterize ocean waves
present in the study area. Table 1.1 gives a summary of the ocean parameters that
were determined using the data set as well as wind conditions and air and sea temperatures
at the nearby NDBC buoy (“Bodega Bay’’) and wind station (“Point Arena”) sites. The most
important measured SAR parameters were rms wave slopes (azimuth and range direc-
tions), rms wave height, dominant wave period, and dominant wavelength. These quan-
tities were estimated using the full-polarization data and the NDBC buoy data.



17

Polarimetric SAR Techniques for Remote Sensing of the Ocean Surface

‘w g /g ydop 193eM ‘M

88°CCT N 9€°£€ uonedo] ‘gINH = (Z109¥) ,,Aeg UOOIA JTeH,, ‘W TG 'adap 193em !\ 78'CCT N G4 '£E 'U0Hed0] 1S = (9209%) ,,00soueL] Ues,, :sfong {,g'F8¢ = ueawt (GINH) 08T
“(dS) 68T UOHIDIIP PUIM ‘S /W GG'9 = ueaw (INH) /W ('S ‘(4S) §/w 'g :paads putm {(YVSATV) 82:76:00 “(ANH ‘AS sAong) 9z:c7:00 :(DLN) dWH 11e3s eyep 88/ /1// ¥1eq

IdqUINU dABM
‘adors swr woy 387 74T
980

V/N

eroads aaem woL] G9g

enoads aaem WoL] 79¢
I2qUINU dABM

JuRUTWOp WOL] €7°ST

I3qUINU dABM
‘adors swr wouy 357 88°C
V/N

60

enoads aaem woL] G9g

e3oads aaem WOL] 6GE
IQUINU dABM

JueUTWOp WOL] /T°ST

1ySey aaem
yuedyIudis 08'
V/N
V/N

uonAIIP
purm woiy 187 087
ydep ‘porred woL] $9¢

£'S1

1Sy aaem
yuedyIudig 01°¢
V/N
V/N

uonRIIP
purm woxy 187 687
pdep ‘porrad wory 9/¢

LSl

(ur) Y319y 2aeM JO deWInST
(,) uonoarp a8uer sadofs swir
() vonarp ynurze sadoys surt

(,) UOTDAITP 2AEM JURUTWO(]
(ur) pSuspaem JueUTWO]

(s) porrad aaem jueUTWO

POURIN
3[3uy eydiy

POYRIN [SuV
uoneIuLIO

Z109% Aong snasiq
wg ‘yD ‘Aeg UoOl JIeH

9209% Aong snasiq
w ¢ ‘YD ‘odsuer] ueg

JUSWINI)SU] JUSWIDINSEIA] 111§ U]

Jojowrere

SINSaY [[PMS dyIdRJ :uead uadQ
¢'L3navl



18 Image Processing for Remote Sensing

Wave specturm

Dominant
wave: 162 m

direction 306°

FIGURE 1.9 (See color insert following page 240.)
Spectrum of waves in the range direction using the alpha parameter from the Cloude-Pottier decomposition
method. Wave direction is 306° and dominant wavelength is 162 m.

The dominant wave at the Bodega Bay buoy during the measurement period is classi-
fied as a long wavelength swell. The contribution from wind wave systems or other swell
components is small relative to the single dominant wave system. Using the surface
gravity wave dispersion relation, one can calculate the dominant wavelength at this
buoy location where the water depth is 122.5 m. The dispersion relation for surface
water waves at finite depth is

wiy = gkw tan h(kH) (1.22)

where wyy is the wave frequency, ky is the wave number (27/A), and H is the water depth.
The calculated value for A is given in Table 1.1.

A spectral profile similar to Figure 1.5a was developed for the alpha parameter tech-
nique and a dominant wave was measured having a wavelength of 156 m and a propa-
gation direction of 306°. Estimates of the ocean parameters obtained using the orientation
angle and alpha angle algorithms are summarized in Table 1.1.

1.2.7.2 Open-Ocean Measurements: San Francisco Study Site

AIRSAR P-band image data were obtained for an ocean swell traveling in the azimuth
direction. The location of this image was to the west of San Francisco Bay. It is a valuable
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FIGURE 1.10
P-band span image of near-azimuth traveling (265°) swell in the Pacific Ocean off the coast of California near
San Francisco.

data set because its location is near two NDBC buoys (““San Francisco” and ““Half-Moon
Bay”’). Figure 1.10 gives a SPAN image of the ocean scene. The long-wavelength swell is
clearly visible. The covariance matrix data was first Lee-filtered to reduce speckle noise
[24] and was then corrected radiometrically.

A polarimetric signature was developed for a 512 x 512 segment of the image and
some distortion was noted. Measuring the distribution of the phase between the HH-pol
and VV-pol backscatter returns eliminated this distortion. For the ocean, this distribu-
tion should have a mean nearly equal to zero. The recalibration procedure set the mean
to zero and the distortion in the polarimetric signature was corrected. Figure 1.11a gives
a plot of the spectral intensity (cross-section modulation) versus the wave number in the
direction of the dominant wave propagation. Figure 1.11b presents a spectrum of
orientation angles versus the wave number. The major peak, caused by the visible
swell, in both plots occurs at a wave number of 0.0175 m ™' or a wavelength of 359 m.
Using Equation 1.22, the dominant wavelength was calculated at the San Francisco/Half
Moon Bay buoy positions and depths. Estimates of the wave parameters developed
from this data set using the orientation and alpha angle algorithms are presented in
Table 1.2.
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FIGURE 1.11
(a) Wave number spectrum of P-band intensity modulations and (b) a wave number spectrum of orientation
angle modulations. The plots are taken in the propagation direction of the dominant wave (265°).

1.3 Polarimetric Measurement of Ocean Wave—Current Interactions
1.3.1 Introduction

Studies have been carried out on the use of polarization orientation angles to remotely
sense ocean wave slope distribution changes caused by wave—current interactions. The
wave—current features studied here involve the surface manifestations of internal waves
[1,25,26-29,30-32] and wave modifications at oceanic current fronts.

Studies have shown that polarimetric SAR data may be used to measure bare surface
roughness [33] and terrain topography [34,35]. Techniques have also been developed for
measuring directional ocean wave spectra [36].



Polarimetric SAR Techniques for Remote Sensing of the Ocean Surface 21

The polarimetric SAR image data used in all of the studies are NASA JPL/AIRSAR, P-,
L-, and C-band, quad-pol microwave backscatter data. AIRSAR images of internal waves
were obtained from the 1992 Joint US/Russia Internal Wave Remote Sensing Experiment
(JUSREX'92) conducted in the New York Bight [25,26].

AIRSAR data on current fronts were obtained during the NRL Gulf Stream Experiment
(NRL-GS"90). The NRL experiment is described in Ref. [20]. Extensive sea-truth is avail-
able for both of these experiments. These studies were motivated by the observation that
strong perturbations occur in the polarization orientation angle 6 in the vicinity of internal
waves and current fronts. The remote sensing of orientation angle changes associated
with internal waves and current fronts are applications that have only recently been
investigated [27-29]. Orientation angle changes should also occur for the related SAR
application involving surface expressions of shallow-water bathymetry [37].

In the studies outlined here, polarization orientation angle changes are shown to be
associated with wave—current interaction features. Orientation angle changes are not,
however, produced by all types of ocean surface features. For example, orientation
angle changes have been successfully used here to discriminate internal wave signatures
from other ocean features, such as surfactant slicks, which produce no mean orientation
angle changes.

1.3.2 Orientation Angle Changes Caused by Wave-Current Interactions

A study was undertaken to determine the effect that several important types of wave—
current interactions have on the polarization orientation angle. The study involved both
actual SAR data and an NRL theoretical model described in Ref. [38].

An example of a JPL/AIRSAR VV-polarization, L-band image of several strong, inter-
secting, internal wave packets is given in Figure 1.12. Packets of internal waves are
generated from parent solitons as the soliton propagates into shallower water at, in this
case, the continental shelf break. The white arrow in Figure 1.12 indicates the propagation
direction of a wedge of internal waves (bounded by the dashed lines). The packet
members within the area of this wedge were investigated.

Radar cross-section (o) intensity perturbations for the type of internal waves encoun-
tered in the New York Bight have been calculated in [30,31,39] and others. Related
perturbations also occur in the ocean wave height and slope spectra. For the solitons
often found in the New York Bight area, these perturbations become significantly larger
for ocean wavelengths longer than about 0.25 m and shorter than 10-20 m. Thus, the
study is essentially concerned with slope changes to meter-length wave scales. The AIR-
SAR slant range resolution cell size for these data is 6.6 m, and the azimuth resolution cell
size is 12.1 m. These resolutions are fine enough for the SAR backscatter to be affected by
perturbed wave slopes (meter-length scales).

The changes in the orientation angle caused by these wave perturbations are seen in
Figure 1.13. The magnitude of these perturbations covers a range § = [—1 to +1]. The
orientation angle perturbations have a large spatial extent (>100 m for the internal wave
soliton width).

The hypothesis assumed was that wave—current interactions make the meter wave-
length slope distributions asymmetric. A profile of orientation angle perturbations
caused by the internal wave study packet is given in Figure 1.14a. The values are
obtained along the propagation vector line of Figure 1.12. Figure 1.14b gives a compari-
son of the orientation angle profile (solid line) and a normalized VV-pol backscatter
intensity profile (dotted-dash line) along the same interval. Note that the orientation
angle positive peaks (white stripe areas, Figure 1.13) align with the negative troughs
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FIGURE 1.12

AIRSAR L-band, VV-pol image of internal wave intersecting packets in the New York Bight. The arrow indicates
the propagation direction for the chosen study packet (within the dashed lines). The angle « relates to the SAR/
packet coordinates. The image intensity has been normalized by the overall average.

(black areas, Figure 1.12). In the direction orthogonal to the propagation vector, every
point is averaged 5 x 5 pixels along the profile. The ratio of the maximum of 6 caused by
the soliton to the average values of § within the ambient ocean is quite large. The
current-induced asymmetry creates a mean wave slope that is manifested as a mean
orientation angle.

The relation between the tangent of the orientation angle 6, wave slopes in the radar
azimuth and ground range directions (tan w, tan 7y), and the radar look angle ¢ from [21]
is given by Equation 1.1, and for a given look angle ¢ the average orientation angle
tangent is
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-1.0° 0° +1.0°
Orientation angle
FIGURE 1.13

The orientation angle image of the internal wave packets in the New York Bight. The area within the wedge
(dashed lines) was studied intensively.

(tan @) = J J tan 6(w,y) - P(w,y) dy dw (1.23)
00

where P(w,y) is the joint probability distribution function for the surface slopes in the
azimuth and range directions. If the slopes are zero-meaned, but P(w,y) is skewed, then
the mean orientation angle may not be zero even though the mean azimuth and range
slopes are zero. It is evident from the above equation that both the azimuth and the range
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(a) The orientation angle value profile along the propagation vector for the internal wave study packet of Figure
1.12 and (b) a comparison of the orientation angle profile (solid line) and a normalized VV-pol backscatter
intensity profile (dot-dash line). Note that the orientation angle positive peaks (white areas, Figure 1.13) align
with the negative troughs (black areas, Figure 1.11).

slopes have an effect on the mean orientation angle. The azimuth slope effect is generally
larger because it is not reduced by the cos ¢ term, which only affects the range slope. If,
for instance, the meter-wavelength waves are produced by a broad wind-wave spectrum,
then both w and vy change locally. This yields a nonzero mean for the orientation angle.
Figure 1.15 gives a histogram of orientation angle values (solid line) for a box inside the
black area of the first packet member of the internal wave. A histogram for the ambient
ocean orientation angle values for a similar-sized box near the internal wave is given by
the dot-dash—dot line in Figure 1.15. Notice the significant difference in the mean value of
these two distributions. The mean change in (tan (0)) inferred from the bias for the
perturbed area within the internal wave is 0.03 rad, corresponding to a 6 value of 1.72°.

The mean water wave slope changes needed to cause such orientation angle changes
are estimated from Equation 1.1. In the denominator of Equation 1.1, the value of tan(y)
cos(¢) < sin(¢) for the value ¢ (=51°) at the packet member location. Using this
approximation, the ensemble average of Equation 1.1 provides the mean azimuth slope
value,
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From the data provided in Figure 1.15, (tan(w)) = 0.0229rad or w = 1.32°. A slope value
of this magnitude is in approximate agreement with slope changes predicted by

Lyzenga et al. [32] for internal waves in the same area during an earlier experiment
(SARSEX, 1988).

1.3.3 Orientation Angle Changes at Ocean Current Fronts

An example of orientation angle changes induced by a second type of wave—current
interaction, the convergent current front, is given in Figure 1.16a and Figure 1.16b. This
image was created using AIRSAR P-band polarimetric data.

The orientation angle response to this (NRL-GS'90) Gulf-Stream convergent-current
front is the vertical white linear feature in Figure 1.16a and the sharp peak in Figure 1.16b.
The perturbation of the orientation angle at, and near, the front location is quite strong
relative to angle fluctuations in the ambient ocean. The change in the orientation angle
maximum is =0.68°. Other fronts in the same area of the Gulf Stream have similar
changes in the orientation angle.

1.3.4 Modeling SAR Images of Wave-Current Interactions

To investigate wave—current-interaction features, a time-dependent ocean wave model has
been developed that allows for general time-varying current, wind fields, and depth [20,38].
The model uses conservation of the wave action to compute the propagation of a statistical
wind-wave system. The action density formalism that is used and an outline of the model
are both described in Ref. [38]. The original model has been extended [1] to include
calculations of polarization orientation angle changes due to wave—current interactions.
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FIGURE 1.16
Current front within the Gulf Stream. An orientation angle image is given in (a) and orientation angle values are
plotted in (b) (for values along the white line in (a)).

Model predictions have been made for the wind-wave field, radar return, and perturb-
ation of the polarization orientation angle due to an internal wave. A model of the surface
manifestation of an internal wave has also been developed. The algorithm used in the model
has been modified from its original form to allow calculation of the polarization orientation
angle and its variation throughout the extent of the soliton current field at the surface.
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The values of both RCS (=(0y)) and (tan()) are computed by the model. The depend-
ence of (tan(f)) on the perturbed ocean wavelength was calculated by the model. This
wavelength dependence is shown in Figure 1.17. The waves resonantly perturb (tan(f))
for wavelengths in the range of 0.25-10.0 m. This result is in good agreement with
previous studies of sigma-0 resonant perturbations for the JUSREX'92 area [39].

Figure 1.18a and Figure 1.18b show the form of the soliton current speed dependence of
(00) and (tan(6)). The potentially useful near-linear relation of (tan(f)), with current U
(Figure 1.18b) is important in applications where determination of current gradients is the
goal. The near-linear nature of this relationship provides the possibility that, from the
value of (tan(6)),, the current magnitude can be estimated. Examination of the model
results has led to the following empirical model of the variation of (tan()) as:

(tan ) = f(U,w, 0,) = (all) - (w?e ") - sin (a|ls,,| + B?) (1.25)

where U, the surface current maximum speed (in m/s), w, the wind speed (in m/s) at
(standard) 19.5 m height, and s, the wind direction (in radians) relative to the soliton
propagation direction. The constants are a = 0.00347, b = 0.365, « = 0.65714, and B =
0.10913. The range of s, is over [—m,7].

Using Equation 1.25, the dashed curve in Figure 1.18 can be generated to show good
agreement relative to the complete model. The solid lines in Figure 1.18 represent results
from the complete model and the dashed lines are results from the empirical relation of
Equation 1.25. This relation is much simpler than conventional estimates based on
perturbation of the backscatter intensity.

The scaling for the relationship is a relatively simple function of the wind speed and the
direction of the locally wind-driven sea. If the orientation angle and wind measurements are
available, then Equation 1.25 allows the internal wave current maximum U to be calculated.

1.4 Ocean Surface Feature Mapping Using Current-Driven Slick Patterns
1.4.1 Introduction

Biogenic and man-made slicks are widely dispersed throughout the oceans. Current driven
surface features, such as spiral eddies, can be made visible by associated patterns of slicks [40].
A combined algorithm using the Cloude-Pottier decomposition and the Wishart classifier
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FIGURE 1.18
(a and b) Model development of the current speed dependence of the max RCS and (tan(f)) variations.
The dashed line in Figure 1.23b gives the values predicted by an empirical equation in Ref. [38].

[41] is utilized to produce accurate maps of slick patterns and to suppress the background
wave field. This technique uses the classified slick patterns to detect spiral eddies. Satellite
SAR instruments performing wave spectral measurements, or operating as wind scatterom-
eters, regard the slicks as a measurement error term. The classification maps produced by the
algorithm facilitate the flagging of slick-contaminated pixels within the image.

Aircraft L-band AIRSAR data (4/2003) taken in California coastal waters provided data
on features that contained spiral eddies. The images also included biogenic slick patterns,
internal wave packets, wind waves, and long wave swell.

The temporal and spatial development of spiral eddies is of considerable importance to
oceanographers. Slick patterns are used as “markers” to detect the presence and extent of
spiral eddies generated in coastal waters. In a SAR image, the slicks appear as black
distributed patterns of lower return. The slick patterns are most prevalent during periods
of low to moderate winds. The spatial distribution of the slicks is determined by local
surface current gradients that are associated with the spiral eddies.

It has been determined that biogenic surfactant slicks may be identified and
classified using SAR polarimetric decompositions. The purpose of the decomposition
is to discriminate against other features such as background wave systems. The
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parameters entropy (H), anisotropy (A), and average alpha (&) of the Cloude-Pottier
decomposition [23] were used in the classification. The results indicate that biogenic
slick patterns, classified by the algorithm, can be used to detect the spiral eddies.

The decomposition parameters were also used to measure small-scale surface rough-
ness as well as larger-scale rms slope distributions and wave spectra [4]. Examples
of slope distributions are given in Figure 1.8b and that of wave spectra in Figure 1.9.
Small-scale roughness variations that were detected by anisotropy changes are given in
Figure 1.19. This figure shows variations in anisotropy at low wind speeds for a filament
of colder, trapped water along the northern California coast. The air-sea stability has
changed for the region containing the filament. The roughness changes are not seen in (a)
the conventional VV-pol image but are clearly visible in (b) an anisotropy image. The data
are from coastal waters near the Mendocino Co. town of Gualala.

Finally, the classification algorithm may also be used to create a flag for the presence of
slicks. Polarimetric satellite SAR systems (e.g.,, RADARSAT-2, ALOS/PALSAR, SIR-C)
attempting to measure wave spectra, or scatterometers measuring wind speed and
direction can avoid using slick contaminated data.

In April 2003, the NRL and the NASA Jet Propulsion Laboratory (JPL) jointly carried
out a series of AIRSAR flights over the Santa Monica Basin off the coast of California.
Backscatter POLSAR image data at P-, L-, and C-bands were acquired. The purpose of the
flights was to better understand the dynamical evolution of spiral eddies, which are

Anisotropy-related
Roughness variations

California

L-band, VV-pol image Anisotropy-A image

FIGURE 1.19 (See color insert following page 240.)

(a) Variations in anisotropy at low wind speeds for a filament of colder, trapped water along the northern
California coast. The roughness changes are not seen in the conventional VV-pol image, but are clearly visible in
(b) an anisotropy image. The data are from coastal waters near the Mendocino Co. town of Gualala.
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generated in this area by interaction of currents with the Channel Islands. Sea-truth was
gathered from a research vessel owned by the University of California at Los Angeles
(UCLA). The flights yielded significant data not only on the time history of spiral eddies
but also on surface waves, natural surfactants, and internal wave signatures. The data
were analyzed using a polarimetric technique, the Cloude-Pottier (H/A/a) decompos-
ition given in Ref. [23]. In Figure 1.20a, the anisotropy is again mapped for a study site

Anisotropy-A image

p=23° I

00 01 02 03 04 05 06 07 08 09 1.0

L-band, VV-pol image

FIGURE 1.20 (See color insert following page 240.)
(a) Image of anisotropy values. The quantity, 1—A, is proportional to small-scale surface roughness and (b) a
conventional L-band, VV-pol image of the study area.
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east of Catalina Island, CA. For comparison, a VV-pol image is given in Figure 1.20b. The
slick field is reasonably well mapped by anisotropy—but the image is noisy because of the
difference in the two small second and third eigenvalues that are used to compute it.

1.4.2 Classification Algorithm

The overall purpose of the field research effort outlined in Section 1.4.1 was to create
a means of detecting ocean features such as spiral eddies using biogenic slicks as
markers, while suppressing other effects such as wave fields and wind-gradient effects.
A polarimetric classification algorithm [41-43] was tested as a candidate means to create
such a feature map.

1.4.2.1 Unsupervised Classification of Ocean Surface Features

Van Zyl [44] and Freeman—Durden [46] developed unsupervised classification algorithms
that separate the image into four classes: odd-bounce, even bounce, diffuse (volume), and
an in-determinate class. For an L-band image, the ocean surface typically is dominated by
the characteristics of the Bragg-scattering odd (single) bounce. City buildings and struc-
tures have the characteristics of even (double) scattering, and heavy forest vegetation has
the characteristics of diffuse (volume) scattering. Consequently, this classification algo-
rithm provides information on the terrain scatterer type. For a refined separation into
more classes, Pottier [6] proposed an unsupervised classification algorithm based on their
target decomposition theory. The medium’s scattering mechanisms, characterized by
entropy H, & average alpha angle, and later anisotropy A, were used for classification.
The entropy H is a measure of randomness of the scattering mechanisms, and the alpha
angle characterizes the scattering mechanism. The unsupervised classification is achieved
by projecting the pixels of an image onto the H-a plane, which is segmented into
scattering zones. The zones for the Gualala study-site data are shown in Figure 1.21.
Details of this segmentation are given in Ref. [6]. In the alpha—entropy scattering zone
map of the decomposition, backscatter returns from the ocean surface normally occur in
the lowest (dark blue color) zone of both alpha and entropy. Returns from slick covered
areas have higher entropy H and average alpha & values, and occur in both the lowest
zone and higher zones.

1.4.2.2 Classification Using Alpha—Entropy Values and the Wishart Classifier

Classification of the image was initiated by creating an alpha—entropy zone scatterplot to
determine the & angle and level of entropy H for scatterers in the slick study area.
Secondly, the image was classified into eight distinct classes using the Wishart classifier
[41]. The alpha-entropy decomposition method provides good image segmentation based
on the scattering characteristics.

The algorithm used is a combination of the unsupervised decomposition classifier and
the supervised Wishart classifier [41]. One uses the segmented image of the decompos-
ition method to form training sets as input for the Wishart classifier. It has been noted that
multi-look data are required to obtain meaningful results in H and &, especially in the
entropy H. In general, 4-look processed data are not sufficient. Normally, additional
averaging (e.g., 5x5 boxcar filter), either of the covariance or of coherency matrices, has
to be performed prior to the H and @ computation. This prefiltering is done on all the
data. The filtered coherency matrix is then used to compute H and a. Initial classification
is made using the eight zones. This initial classification map is then used to train the
Wishart classification. The reclassified result shows improvement in retaining details.
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FIGURE 1.21 (See color insert following page 240.)
Alpha-entropy scatter plot for the image study area. The plot is divided into eight color-coded scattering classes
for the Cloude-Pottier decomposition described in Ref. [6].

Further improvement is possible by using several iterations. The reclassified image is then
used to update the cluster centers of the coherency matrices. For the present data, two
iterations of this process were sufficient to produce good classifications of the complete
biogenic fields. Figure 1.22 presents a completed classification map of the biogenic slick
fields. Information is provided by the eight color-code classes in the image in Figure 1.22.
The returns from within the largest slick (labeled as A) have classes that progressively
increase in both average alpha and entropy as a path is made from clean water inward
toward the center of the slick. Therefore, the scattering becomes less surfacelike (&
increase) and also becomes more depolarized (H increase) as one approaches the center
of the slick (Figure 1.22, Label A).

The algorithm outlined above may be applied to an image containing large-scale ocean
features. An image (JPL/CM6744) of classified slick patterns for two-linked spiral eddies
near Catalina Island, CA, is given in Figure 1.23b. An L-band, HH-pol image is presented
in Figure 1.23a for comparison. The Pacific swell is suppressed in areas where there are no
slicks. The waves do, however, appear in areas where there are slicks because the currents
associated with the orbital motion of the waves alternately compress or expand the slick-
field density. Note the dark slick patch to the left of label A in Figure 1.23a and Figure
1.23b. This patch clearly has strongly suppressed the backscatter at HH-pol
The corresponding area of Figure 1.23b has been classified into three classes and
colors (Class 7—salmon, Class 5—yellow, and Class 2—dark green), which indicate
progressive increases in scattering complexity and depolarization as one moves from
the perimeter of the slick toward its interior. A similar change in scattering occurs to the
left of label B near the center of Figure 1.23a and Figure 1.23b. In this case, as one moves
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FIGURE 1.22 (See color insert following page 240.)
Classification of the slick-field image into H/ & scattering classes.
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FIGURE 1.23 (See color insert following page 240.)

(a) L-band, HH-pol image of a second study image (CM6744) containing two strong spiral eddies marked by
natural biogenic slicks and (b) classification of the slicks marking the spiral eddies. The image features were
classified into eight classes using the H-& values combined with the Wishart classifier.



34 Image Processing for Remote Sensing

from the perimeter into the slick toward the center, the classes and colors (Class 7—
salmon, Class 4—light green, Class 1—white) also indicate progressive increases in
scattering complexity and depolarization.

1.4.2.3 Comparative Mapping of Slicks Using Other Classification Algorithms

The question arises whether or not the algorithm using entropy-alpha values with the
Wishart classifier is the best candidate for unsupervised detection and mapping of slick
fields. Two candidate algorithms were suggested as possible competitive classification
methods. These were (1) the Freeman-Durden decomposition [45] and (2) the (H/A/&)-
Wishart segmentation algorithm [42,43], which introduce anisotropy to the parameter mix
because of its sensitivity to ocean surface roughness. Programs were developed to inves-
tigate the slick classification capabilities of these candidate algorithms. The same amount
of averaging (5 x 5) and speckle reduction was done for all of the algorithms. The results
with the Freeman-Durden classification were poor at both L- and C-bands. Nearly all of
the returns were surface, single-bounce scatter. This is expected because the Freeman-—
Durden decomposition was developed on the basis of scattering models of land features.
This method could not discriminate between waves and slicks and did not improve on the
results using conventional VV or HH polarization.

The (H/A/&)-Wishart segmentation algorithm was investigated to take advantage of
the small-scale roughness sensitivity of the polarimetric anisotropy A. The anisotropy is
shown (Figure 1.20b) to be very sensitive to slick patterns across the whole image. The
(H/A/&)-Wishart segmentation method expands the number of classes from 8 to 16 by
including the anisotropy A. The best way to introduce information about A in the
classification procedure is to carry out two successive Wishart classifier algorithms. The
first classification only involves H/a. Each class in the H/& plane is then further divided
into two classes according to whether the pixel’s anisotropy values are greater than 0.5 or
less than 0.5. The Wishart classifier is then employed a second time. Details of this
algorithm are given in Ref. [42,43]. The results of using the (H/A/&)-Wishart method
and iterating it twice are given in Figure 1.24.

Classification of the slick-field image using the (H/A/&)-Wishart method resulted in
14 scattering classes. Two of the expected 16 classes were suppressed. The Classes 1-7
corresponded to anisotropy A values from 0.5 to 1.0 and the Classes 8-14 corresponded to
anisotropy A values from 0.0 to 0.49. The new two lighter blue vertical features at the
lower right of the image appeared in all images involving anisotropy and were thought to
be a smooth slick of the lower surfactant material concentration. This algorithm was an
improvement relative to the H/a-Wishart algorithm for slick mapping. All of the slick-
covered areas were classified well and the unwanted wave field intensity modulations
were suppressed.

1.5 Conclusions

Methods that are capable of measuring ocean wave spectra and slope distributions in
both the range and azimuth directions were described. The new measurements are
sensitive and provide nearly direct measurements of ocean wave spectra and slopes
without the need for a complex MTFE. The orientation modulation spectrum has a higher
dominant wave peak and background ratio than the intensity-based spectrum. The results
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FIGURE 1.24 (See color insert following page 240.)

Classification of the slick-field image into H/ A /& 14 scattering classes. The Classes 1-7 correspond to anisotropy
A values 0.5 to 1.0 and the Classes 8-14 correspond to anisotropy A values 0.0 to 0.49. The two lighter blue
vertical features at the lower right of the image appear in all images involving anisotropy and are thought to be
smooth slicks of lower concentration.

determined for the dominant wave direction, wavelength, and wave height are compar-
able to the NDBC buoy measurements. The wave slope and wave spectra measurement
methods that have been investigated may be developed further into fully operational
algorithms. These algorithms may then be used by polarimetric SAR instruments, such as
ALOS/PALSAR and RADARSAT II, to monitor sea-state conditions globally.

Secondly, this work has investigated the effect of internal waves and current fronts on
the SAR polarization orientation angle. The results provide a potential (1) independent
means for identifying these ocean features and (2) a method of estimating the mean value
of the surface current and slope changes associated with an internal wave. Simulations of
the NRL wave—current interaction model [38] have been used to identify and quantify the
different variables such as current speed, wind speed, and wind direction, which deter-
mine changes in the SAR polarization orientation angle.

The polarimetric scattering properties of biogenic slicks have been found to be different
from those of the clean surface wave field and the slicks may be separated from this
background wave field. Damping of capillary waves, in the slick areas, lowers all of the
eigenvalues of the decomposition and increases the average alpha angle, entropy, and the
anisotropy.

The Cloude-Pottier polarimetric decomposition was also used as a new means of
studying scattering properties of surfactant slicks perturbed by current-driven surface
features. The features, for example, spiral eddies, were marked by filament patterns of
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slicks. These slick filaments were physically smoother. Backscatter from them was more
complex (three eigenvalues nearly equal) and was more depolarized.

Anisotropy was found to be sensitive to small-scale ocean surface roughness, but was
not a function of large-scale range or azimuth wave slopes. These unique properties
provided an achievable separation of roughness scales on the ocean surface at low wind
speeds. Changes in anisotropy due to surfactant slicks were found to be measurable
across the entire radar swath.

Finally, polarimetric SAR decomposition parameters alpha, entropy, and anisotropy
were used as an effective means for classifying biogenic slicks. Algorithms, using these
parameters, were developed for the mapping of both slick fields and ocean surface
features. Selective mapping of biogenic slick fields may be achieved using either the
entropy or the alpha parameters with the Wishart classifier or, by the entropy, anisotropy,
or the alpha parameters with the Wishart classifier. The latter algorithm gives the best
results overall.

Slick maps made using this algorithm are of use for satellite scatterometers and wave

spectrometers in efforts aimed at flagging ocean surface areas that are contaminated by
slick fields.
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2.1 Introduction

Within remote-sensing image analysis, Markov random field (MRF) models represent a
powerful tool [1], due to their ability to integrate contextual information associated with
the image data in the analysis process [2,3,4]. In particular, the use of a global model for
the statistical dependence of all the image pixels in a given image-analysis scheme
typically turns out to be an intractable task. The MRF approach offers a solution to this
issue, as it allows expressing a global model of the contextual information by using only
local relations among neighboring pixels [2]. Specifically, due to the Hammersley—
Clifford theorem [3], a large class of global contextual models (i.e., the Gibbs random
fields, GRFs [2]) can be proved to be equivalent to local MRFs, thus sharply reducing the
related model complexity. In particular, MRFs have been used for remote-sensing image
analysis, for single-date [5], multi-temporal [6-8], multi-source [9], and multi-resolution [10]

39
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classification, for denoising [1], segmentation [11-14], anomaly detection [15], texture
extraction [2,13,16], and change detection [17-19].

Focusing on the specific problem of image classification, the MRF approach allows one to
express a “‘maximum-a-posteriori” (MAP) decision task as the minimization of a suitable
energy function. Several techniques have been proposed to deal with this minimization
problem, such as the simulated annealing (SA), an iterative stochastic optimization algorithm
converging to a global minimum of the energy [3] but typically involving long execution
times [2,5], the iterative conditional modes (ICM), an iterative deterministic algorithm
converging to a local (but usually good) minimum point [20] and requiring much shorter
computation times than SA [2], and the maximization of posterior marginals (MPM), which
approximates the MAP rule by maximizing the marginal posterior distribution of the class
label of each pixel instead of the joint posterior distribution of all image labels [2,11,21].

However, an MRF model usually involves the use of one or more internal parameters, thus
requiring a preliminary parameter-setting stage before the application of the model itself. In
particular, especially in the context of supervised classification, interactive “‘trial-and-error”
procedures are typically employed to choose suitable values for the model parameters
[2,5,9,11,17,19], while the problem of fast automatic parameter-setting for MRF classifiers is
still an open issue in the MREF literature. The lack of effective automatic parameter-setting
techniques has represented a significant limitation on the operational use of MRF-based
supervised classification architectures, although such methodologies are known for their
ability to generate accurate classification maps [9]. On the other hand, the availability of the
above-mentioned unsupervised parameter-setting procedures has contributed to an exten-
sive use of MRFs for segmentation and unsupervised classification purposes [22,23].

In the present chapter, an automatic parameter optimization algorithm is proposed to
overcome the above limitation in the context of supervised image classification. The
method refers to a broad category of MRF models, characterized by energy functions
expressed as linear combinations of different energy contributions (e.g., representing
different typologies of contextual information) [2,7]. The algorithm exploits this linear
dependence to formalize the parameter-setting problem as the solution of a set of
linear inequalities, and addresses this problem by extending to the present context the
Ho-Kashyap method for linear classifier training [24,25]. The well-known convergence
properties of such a method and the absence of parameters to be tuned are among the
good features of the proposed technique.

The chapter is organized as follows. Section 2.2 provides an overview of the previous
work on the problem of MRF parameter estimation. Section 2.3 describes the metho-
dological issues of the method, and Section 2.4 presents the results of the application of
the technique to the classification of real (both single-date and multi-temporal) remote
sensing images. Finally, conclusions are drawn in Section 2.5.

2.2 Previous Work on MRF Parameter Estimation

Several parameter-setting algorithms have been proposed in the context of MRF models
for image segmentation (e.g., [12,22,26,27]) or unsupervised classification [23,28,29],
although often resulting in a considerable computational burden. In particular, the
usual maximum likelihood (ML) parameter estimation approach [30] exhibits good the-
oretical consistency properties when applied to GRFs and MRFs [31], but turns out to be
computationally very expensive for most MRF models [22] or even intractable [20,32,33],
due to the difficulty of analytical computation and numerical maximization of the
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normalization constants involved by the MRF-based distributions (the so-called “parti-
tion functions”) [20,23,33]. Operatively, the use of ML estimates for MRF parameters
turns out to be restricted just to specific typologies of MRFs, such as continuous Gaussian
[1,13,15,34,35] or generalized Gaussian [36] fields, which allows an ML estimation task to
be formulated in an analytically feasible way.

Beyond such case-specific techniques, essentially three approaches have been sug-
gested in the literature to address the problem of unsupervised ML estimation of MRF
parameters indirectly, namely the Monte Carlo methods, the stochastic gradient
approaches, or the pseudo-likelihood approximations [23]. The combination of the ML
criterion with Monte Carlo simulations has been proposed to overcome the difficulty of
computation of the partition function [22,37] and it provides good estimation results, but
it usually involves long execution times. Stochastic-gradient approaches aim at maximiz-
ing the log-likelihood function by integrating a Gibbs stochastic sampling strategy into
the gradient ascent method [23,38]. Combinations of the stochastic-gradient approach
with the iterated conditional expectation (ICE) and with an estimation-restoration scheme
have also been proposed in Refs. [12,29], respectively. Approximate pseudo-likelihood
functionals have been introduced [20,23], and they are numerically feasible, although the
resulting estimates are not actual ML estimates (except in the trivial noncontextual case of
pixel independence) [20]. Moreover the pseudo-likelihood approximation may underesti-
mate the interactions between pixels and can provide unsatisfactory results unless the
interactions are suitably weak [21,23]. Pseudo-likelihood approaches have also been
developed in conjunction with mean-field approximations [26], with the expectation-
maximization (EM) [21,39], the Metropolis—-Hastings [40], and the ICE [21] algorithms,
with Monte Carlo simulations [41], or with multi-resolution analysis [42]. In Ref. [20] a
pseudo-likelihood approach is plugged into the ICM energy minimization strategy, by
iteratively alternating the update of the contextual clustering map and the update of the
parameter values. In Ref. [10] this method is integrated with EM in the context of multi-
resolution MRFs. A related technique is the “coding method,” which is based on a
pseudo-likelihood functional computed over a subset of pixels, although these subsets
depend on the choice of suitable coding strategies [34].

Several empirical or ad hoc estimators have also been developed. In Ref. [33] a family of
MRF models with polynomial energy functions is proved to be dense in the space of all
MRFs and is endowed with a case-specific estimation scheme based on the method of
moments. In Ref. [43] a least-square approach is proposed for Ising-type and Potts-type
MRF models [22], and it formulates an overdetermined system of linear equations relating
the unknown parameters with a set of relative frequencies of pixel-label configurations.
The combination of this method with EM is applied in Ref. [44] for sonar image segmen-
tation purposes. A simpler but conceptually similar approach is adopted in Ref. [12] and
is combined with ICE: a simple algebraic empirical estimator for a one-parameter spatial
MRF model is developed and it directly relates the parameter value with the relative
frequencies of several class-label configurations in the image.

On the other hand, the literature about MRF parameter-setting for supervised image
classification is very limited. Any unsupervised MRF parameter estimator can also
naturally be applied to a supervised problem, by simply neglecting the training data in
the estimation process. However, only a few techniques have been proposed so far,
effectively exploiting the available training information for MRF parameter-optimization
purposes as well. In particular, a heuristic algorithm is developed in Ref. [7] aiming to
optimize automatically the parameters of a multi-temporal MRF model for a joint super-
vised classification of two-date imagery, and a genetic approach is combined in Ref. [45]
with simulated annealing [3] for the estimation of the parameters of a spatial MRF model
for multi-source classification.
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2.3 Supervised MRF-Based Classification
2.3.1  MRF Models for Image Classification

LetI = {x1, x5, ..., xn} be a given n-band remote-sensing image, modeled as a set of N
identically distributed n-variate random vectors. We assume M thematic classes wy, w, ...,
w1 to be present in the image and we denote the resulting set of classes by ) = {wq, w», ...,
wp} and the class label of the k-th image pixel (k = 1,2,..., N) by s, € ). By operating in the
context of supervised image classification, we assume a training set to be available, and we
denote the index set of the training pixels by T C {1,2,..., N} and the corresponding true
class label of the k-th training pixel (k € T) by s§. When collecting all the feature vectors of
the N image pixels in a single (N - n)-dimensional column vector® X = col[xy, X2, ..., Xn]
and all the pixel labels in a discrete random vector S = (s1, 52, ..., Sn) € QN the MAP
decision rule (i.e., the Bayes rule for minimum classification error [46]) assigns to the image
data X the label vector S, which maximizes the joint posterior probability P(S|X), that is,

S= arg max P(S|X) = arg max [p(X|S)P(S)] (2.1)
SeaV SeaV

where p(X|S) and P(S) are the joint probability density function (PDF) of the global feature
vector X conditioned to the label vector S and the joint probability mass function (PMF) of
the label vector itself, respectively. The MRF approach offers a computationally tractable
solution to this maximization problem by passing from a global model for the statistical
dependence of the class labels to a model of the local image properties, defined according to
a given neighborhood system [2,3]. Specifically, for each k-th image pixel, a neighborhood
N C{1,2,..., N}is assumed to be defined, such that, for instance, Ny includes the four (first-
order neighborhood) or the eight (second-order neighborhood) pixels surrounding the k-th
pixel (k = 1,2,..., N). More formally, a neighborhood system is a collection (NN, of
subsets of pixels such that each pixel is outside its neighborhood (i.e., k ¢ Ni for all
k=1,2,..., N) and neighboring pixels are always mutually neighbors (i.e., k € N}, if and
only if i € Ny for all k,h =1,2,..., N, k # h). This simple discrete topological structure
attached to the image data is exploited in the MRF framework to model the statistical
relationships between the class labels of spatially distinct pixels and to provide a compu-
tationally affordable solution to the global MAP classification problem of Equation 2.1.

Specifically, we assume the feature vectors x4, X, ..., X to be conditionally independ-
ent and identically distributed with PDF p(x|s) (x € R", s € Q), that is [2],

N
pXIS) = [T plxels) (2.2)
Pl

and the joint prior PMF P(S) to be a Markov random field with respect to the above-
mentioned neighborhood system, that is [2,3],

* the probability distribution of each k-th image label, conditioned to all the other
image labels, is equivalent to the distribution of the k-th label conditioned only to
the labels of the neighboring pixels (k=1,2,..., N):

LAll the vectors in the chapter are implicitly assumed to be column vectors, and we denote by u; the i-th
component of an m-dimensional vector u € R"™ (i = 1,2,..., m), by “col” the operator of column vector
juxtaposition (i.e., col [u,0] is the vector obtained by stacking the two vectors u € R” and v € R" in a single
(m + n)-dimensional column vector), and by the superscript “T" the matrix transpose operator.
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P{Sk = a),'|Sh:h 7é k} = P{Sk = w,“Shll/l € Nk}, i=12,....M (23)

o the PMF of S is a strictly positive function on OV, that is, P(S) > 0 for all S € Q.

The Markov assumption expressed by Equation 2.3 allows restricting the statistical
relationships among the image labels to the local relationships inside the predefined
neighborhood, thus greatly simplifying the spatial-contextual model for the label distri-
bution as compared to a generic global model for the joint PMF of all the image labels.
However, as stated in the next subsection, due to the so-called Hammersley—Clifford
theorem, despite this strong analytical simplification, a large class of contextual models
can be accomplished under the MRF formalism.

2.3.2 Energy Functions

Given the neighborhood system {Nj}i_;, we denote by “clique” a set Q of pixels (Q C
{1,2,..., N}) such that, for each pair (k, 1) of pixels in Q, k and h turn out to be mutually
neighbors, that is,

keN, < heN; VkheQ, k#h (2.4)

By marking the collection of all the cliques in the adopted neighborhood system by Q and
the vector of the pixel labels in the clique Q € Q (ie, So = col[sik € Q]) by Sp, the
Hammersley—Clifford theorem states that the label configuration S is an MRF if and only if,
for any clique Q € Q there exists a real-valued function V (Sp) (usually named “potential
function”) of the pixel labels in Q, so that the global PMF of S is given by the following Gibbs
distribution [3]:

P(S) =

uprior (S )
Xp | — )

‘ ] where: Uprior(S) = »_ Vo(So) (2.5)
prior Qco

0 is a positive parameter, and Z,r is @ normalizing constant. Because of the formal
similarity between the probability distribution in Equation 2.5 and the well-known Max-
well-Boltzmann distribution introduced in statistical mechanics for canonical ensembles
[47], Uprior (-), ©, and Zio are usually named “energy function,” “temperature,” and
“partition function,” respectively. A very large class of statistical interactions among spa-
tially distinct pixels can be modeled in this framework, by simply choosing a suitable
function Uprior (-), which makes the MRF approach highly flexible. In addition, when
coupling the Hammersley—Clifford formulation of the prior PMF P(S) with the conditional
independence assumption stated for the conditional PDF p(X|S) (see Equation 2.2), an energy
representation also holds for the global posterior distribution P(S|X), that is [2],

exp |:_ upost(s |X):|

P(S|X) = 5

2.6
Zpost,X ( )

where Z,. x is @a normalizing constant and Uy, (-) is a posterior energy function, given by:

N
Upost(S1X) = =0 > " Inp(xlse) + Y Vo(Sg) 2.7)
k=1 QeQ

This formulation of the global posterior probability allows addressing the MAP classi-
fication task as the minimization of the energy function Up.s(:|X), which is locally
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defined, according to the pixelwise PDF of the feature vectors conditioned to the class
labels and to the collection of the potential functions. This makes the maximization
problem of Equation 2.1 tractable and allows a contextual classification map of the
image I to be feasibly generated.

However, the (prior and posterior) energy functions are generally parameterized by
several real parameters Aq, Ay, ..., Ar. Therefore, the solution of the minimum-energy
problem requires the preliminary selection of a proper value for the parameter vector A =
A, Ap ety A L)T. As described in the next subsections, in the present chapter, we address
this parameter-setting issue with regard to a broad family of MRF models, which have
been employed in the remote-sensing literature, and to the ICM minimization strategy for
the energy function.

2.3.3 Operational Setting of the Proposed Method

Among the techniques proposed in the literature to deal with the task of minimizing the
posterior energy function (see Section 2.1), in the present chapter ICM is adopted as a
trade-off between the effectiveness of the minimization process and the computation time
[5,7], and it is endowed with an automatic parameter-setting stage. Specifically, ICM is
initialized with a given label vector S® = (s{, s3,..., s%)" (e.g., generated by a previously
applied noncontextual supervised classifier) and it iteratively modifies the class labels to
decrease the energy function. In particular, by marking by C; the set of the neighbor labels
of the k-th pixel (i.e., the “context” of the k-th pixel, C; = col[s;:h € Ni]), at the t-th ICM
iteration, the label s; is updated according to the feature vector x; and to the current
neighboring labels Cf, so that sf * ' is the class label w, that minimizes a local energy
function U, (wix;,C{) (the subscript A is introduced to stress the dependence of the
energy on the parameter vector A). More specifically, given the neighborhood system,
an energy representation can also be proved for the local distribution of the class labels,
thatis, ( = 1,2,...,M; k = 1,2,...,N) [9]:

1 Uy (@i]xi, Ci)
P = i , = — - 7 .
{Sk w \xk Ck} Zk)\ exp[ e) (2 8)
where Z;, is a further normalizing constant and the local energy is defined by
U (@ilxi, C) = =OInp(xelo) + > Vo(So) (29)

Q>3k

Here we focus on the family of MRF models whose local energy functions U,(-) can be
expressed as weighted sums of distinct energy contributions, that is,

L
Un(@ilxi, C) = D A€ulwilv, Co), k=1,2,...,N (2.10)
(=1

where &(-) is the ¢-th contribution and the parameter A, plays the role of the weight of £,(-)
(¢ =1,2,..., L). A formal comparison between Equation 2.9 and Equation 2.10 suggests
that one of the considered L contributions (say, £:1(-)) should be related to the pixelwise
conditional PDF of the feature vector (i.e., £1(w;|xx) x — In p(xi|w;)), which formalizes the
spectral information associated with each single pixel. From this viewpoint, postulating
the presence of (L — 1) further contributions implicitly means that (L — 1) typologies of
contextual information are modeled by the adopted MRF and are supposed to be separ-
able (i.e., combined in a purely additive way) [7]. Formally speaking, Equation 2.10
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represents a constraint on the energy function, but most MRF models employed in remote
sensing for classification, change detection, or segmentation purposes belong to this
category. For instance, the pairwise interaction model described in Ref. [2], the well-
known spatial Potts MRF model employed in Ref. [17] for change detection purposes and
in Ref. [5] for hyperspectral data classification, the spatio-temporal MRF model intro-
duced in Ref. [7] for multi-date image classification, and the multi-source classification
models defined in Ref. [9] belong to this family of MRFs.

2.3.4 The Proposed MRF Parameter Optimization Method

With regard to the class of MRFs identified by Equation 2.10, the proposed method
employs the training data to identify a set of parameters for the purpose of maximizing
the classification accuracy by exploiting the linear relation between the energy function
and the parameter vector. When focusing on the first ICM iteration, the k-th training
sample (k € T) is correctly classified by the minimum-energy rule if:

Un (st |xi, CF) < Un(@ilxi, C) Ve # i (2.11)

or equivalently:

L

> Ae[Ed@ilxi, CD) — Estine, CD] = 0 Veor # s (2.12)
=1

We note that the inequalities in Equation 2.12 are linear with respect to A, that is, the
correct classification of a training pixel is expressed as a set of (M — 1) linear inequalities
with respect to the model parameters. More formally, when collecting the energy differ-
ences contained in Equation 2.12 in a single L-dimensional column vector:

exi = col [Ex(w;|xx, CF) — Exlsklx, C: € =1,2,... L] (2.13)

the k-th training pixel is correctly classified by ICM if eriA > 0 for all the class labels w; # si
(k € T). By denoting by E the matrix obtained by juxtaposing all the row vectors &f; (k € T, w;
# s¢), we conclude that ICM correctly classifies the whole training set T if and only if*:

Ex >0 (2.14)

Operatively, the matrix E includes all the coefficients (i.e., the energy differences) of the
linear inequalities in Equation 2.12; hence, E has L columns and has a row for each
inequality, that is, it has (M — 1) rows for each training pixel (corresponding to the
(M — 1) class labels, which are different from the true label). Therefore, denoting by |T]|
the number of training samples (i.e., the cardinality of T), E is an (R x L)-sized matrix,
with R=|T| (M — 1). Since R >> L, the system in Equation 2.14 presents a number of
inequalities, which is much larger than the number of unknown variables. In particular, a
feasible approach would lie in formulating the matrix inequality in Equation 2.14 as an
equality E A =b, where binR" is a “margin” vector with positive components, to solve
such equality by a minimum square error (MSE) approach [24]. However, MSE would
require a preliminary manual choice of margin vector b. Therefore, we avoid using this
approach, and note that this problem is formally identical to the problem of computing

2Given two m-dimensional vectors, u and v (1, v € IR™), we write u > v to mean 1; > v; foralli = 1,2,...,m.
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the weight parameters of a linear binary discriminant function [24]. Hence, we propose
to address the solution of Equation 2.14 by extending to the present context the methods
described in the literature to compute such a linear discriminant function. In particular,
we adopt the Ho-Kashyap method [24]. This approach jointly optimizes both A and b
according to the following quadratic programing problem [24]:

min ||EA — b|)?
Ab

A cRE Db e RR (2.15)

b, >0 for r=1,2,...,R

which is solved by alternating iteratively an MSE step to update A and a gradient-
like descent step to update b [24]. Specifically, the following operations are performed
at the t-th step (t = 0,1,2,...) of the Ho—Kashyap procedure [24]:

* given the current margin vector b', compute a corresponding parameter vector X
by minimizing ||E A — b'||* with respect to A, that is, compute:

A = E*b', where E* = (ETE)'ET (2.16)
is the so-called pseudo-inverse of E (provided that E'E is nonsingular) [48]

* compute the error vector ¢ = EA' — b' € R¥

o update each component of the margin vector by minimizing ||[EX" — b||* with
respect to b by a gradient-like descent step that allows the margin components
only to be increased [24], that is, compute

b + pet if e >0
H1 _ ) 9 T PE r _
b, —{ bt if o <0 r=1,2,...,R (2.17)

where p is a convergence parameter.

In particular, the proposed approach to the MRF parameter-setting problem allows
exploiting the known theoretical results about the Ho-Kashyap method in the context of
linear discriminant functions. Specifically, one can prove that, if the matrix inequality in
Equation 2.14 has solutions and if 0 < p < 2, then the Ho—Kashyap algorithm converges to a
solution of Equation 2.14 in a finite number 7 of iterations (i.e., we obtain ¢"=0 and
consequently b” * '=b" and EA"=b" > 0) [24]. On the other hand, if the inequality
in Equation 2.14 has no solution, it is possible to prove that each component e/ of the error
vector (r=1,2,..., R) either vanishes for t — +oo or takes on nonpositive values, while the
error magnitude ||¢'|| converges to a positive limit, which is bounded away from zero; in the
latter situation, according to the Ho—Kashyap iterative procedure, the algorithm stops, and
one can conclude that the matrix inequality in Equation 2.14 has no solution [46]. Therefore,
the convergence (either finite-time or asymptotic) of the proposed parameter-setting method
is guaranteed in any case. However, it is worth noting that the number 7 of iterations required
to reach convergence in the first case or the number 7 of iterations needed to detect the
nonexistence of a solution of Equation 2.14 in the second case are not known in advance.
Hence, specific stop conditions are usually adopted for the Ho—Kashyap procedure, for
instance, by stopping the iterative process when | Aj™" — A} | < &gop for all £=1,2,..., L
and [b"'—b/|< egop for all r=1,2,..., R, where &gop is a given threshold (in the present
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chapter, &4p = 0.0001 is used). The algorithm has been initialized by setting unitary values
for all the components of A and b and by choosing p=1.

Coupling the proposed Ho-Kashyap-based parameter-setting method with the ICM
classification approach results in an automatic contextual supervised classification
approach (hereafter marked by HK-ICM), which performs the following processing steps:

e Noncontextual step: generate an initial noncontextual classification map
(i.e., an initial label vector S°) by applying a given supervised noncontextual
(e.g., Bayesian or neural) classifier;

 Energy-difference step: compute the energy-difference matrix E according to the
adopted MRF model and to the label vector S’

o Ho—Kashyap step: compute an optimal parameter vector A by running the
Ho—Kashyap procedure (applied to the matrix E) up to convergence; and

¢ ICM step: generate a contextual classification map by running ICM (fed with the
parameter vector X) up to convergence.

A block diagram of the proposed contextual classification scheme is shown in Figure 2.1.
It is worth noting that, according to the role of the parameters as weights of energy
contributions, negative values for A3y As, ..., A would be undesirable. To prevent
this issue, we note that, if all the entries in a given row of the matrix E are negative,
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Multiband
image 7
—

Noncontextual step:

generation of an initial |
noncontextual

classification map

S0 MM—
\ 4

Energy-difference step:
> computation of the <
matrix E

E

\ 4
Ho—Kashyap step:
computation of the

optimal parameter vector

2

2*
A 4

ICM step: contextual
P classification of the input [«
image

A 4

Contextual FIGURE 2.1
classification map Block diagram of the proposed contextual
classification scheme.
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the corresponding inequality cannot be satisfied by a vector A with positive components.
Therefore, before the application of the Ho—Kashyap step, the rows of E containing only
negative entries are cancelled, as such rows would represent linear inequalities that could
not be solved by positive parameter vector solutions. In other words, each deleted row
corresponds to a training pixel k € T, so that a class w; # s¢ has a lower energy than the
true class label s for all possible positive values of the parameters Ay, Ay, ..., Ap (therefore,
its classification is wrong).

2.4 Experimental Results

The proposed HK-ICM method was tested on three different MRF models, each applied
to a distinct real data set. In all the cases, the results provided by ICM, endowed with the
proposed automatic parameter-optimization method, are compared with the ones that
can be achieved by performing an exhaustive grid search for the parameter values
yielding the highest accuracies on the training set; operationally, such parameter
values can be obtained by a ““trial-and-error”” procedure (TE-ICM in the following).

Specifically, in all the experiments, spatially distinct training and test fields were
available for each class. We note that the highest training-set (and not test-set) accuracy
is searched for by TE-ICM to perform a consistent comparison with the proposed
method, which deals only with the available training samples. A comparison between
the classification accuracies of HK-ICM and TE-ICM on such a set of samples aims at
assessing the performances of the proposed method from the viewpoint of the MRF
parameter-optimization problem. On the other hand, an analysis of the test-set accur-
acies allows one to assess the quality of the resulting classification maps. Correspond-
ingly, Table 2.1 through Table 2.3 show, for the three experiments, the classification
accuracies provided by HK-ICM and those given by TE-ICM on both the training and
the test sets.

In all the experiments, 10 ICM iterations were sufficient to reach convergence, and the
Ho—Kashyap algorithm was initialized by setting a unitary value for all the MRF param-
eters (i.e., by initially giving the same weight to all the energy contributions).

TABLE 2.1

Experiment I: Training and Test-Set Cardinalities and Classification Accuracies Provided by the
Noncontextual GMAP Classifier, by HK-ICM, and by TE-ICM

. Test-Set Accuracy Training-Set Accuracy
Training  Test

Class Samples Samples GMAP (%) HK-ICM (%) TE-ICM (%) HK-ICM (%) TE-ICM (%)
Wet soil 1866 750 93.73 96.93 96.80 98.66 98.61
Urban 4195 2168 94.10 99.31 99.45 97.00 97.02
Wood 3685 2048 98.19 98.97 98.97 96.85 96.85
Water 1518 875 91.66 92.69 92.69 98.16 98.22
Bare soil 3377 2586 97.53 99.54 99.54 99.20 99.20
Overall

accuracy 95.86 98.40 98.42 97.80 97.81
Average

accuracy 95.04 97.49 97.49 97.97 97.98
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2.4.1 Experiment I: Spatial MRF Model for Single-Date Image Classification

The spatial MRF model described in Refs. [5,17] is adopted: it employs a second-order
neighborhood (i.e., Ci includes the labels of the 8 pixels surrounding the k-th pixel;
k=1,2,...,N) and a parametric Gaussian N(m;, ;) model for the PDF p(xy|w;) of a feature
vector x; conditioned to the class w; (i =1,2, ..., M; k=1,2, ..., N). Specifically, two
energy contributions are defined, that is, a “spectral’” energy term E;(-), related to the
information conveyed by the conditional statistics of the feature vector of each single pixel
and a “spatial” term E,(-), related to the information conveyed by the correlation among
the class labels of neighboring pixels, that is, (k=1,2,..., N):

Ex(wi|x) = (v — i) 57 (o — 1)) + IndetSy,  Ex(wi|C) =— Y S(wi,w)  (2.18)

w0, €Cy

where 7iz; and 3; are a sample-mean estimate and a sample-covariance estimate of the
conditional mean m; and of the conditional covariance matrix 3,;, respectively, computed
using the training samples of w; (i = 1,2, ..., M); 8 (-, -) is the Kronecker delta function
(i.e., 6(a,b)=1fora=band 6(a, b) =0 for a # b). Hence, in this case, two parameters, A; and
Ay, have to be set.

The model was applied to a 6 -band 870 x 498 pixel-sized Landsat-5 TM image acquired in
April, 1994, over an urban and agricultural area around the town of Pavia (Italy) (Figure
2.2a), and presenting five thematic classes (i.e., “wet soil,” “urban,” “wood,” ““water,” and
“bare soil;” see Table 2.1). The above-mentioned normality assumption for the conditional
PDFs is usually accepted as a model for the class statistics in optical data [49,50]. A standard
noncontextual MAP classifier with Gaussian classes (hereafter denoted simply by GMAP)
[49,50] was adopted in the noncontextual step. The Ho—Kashyap step required 31716 iter-
ations to reach convergence and selected A1=0.99 and A, =10.30. The classification accur-
acies provided by GMAP and HK-ICM on the test set are given in Table 2.1. GMAP already
provides good classification performances, with accuracies higher than 90% for all the
classes. However, as expected, the contextual HK-ICM classifier further improves the
classification result, in particular, yielding, a 3.20% accuracy increase for “wet soil” and a
5.21% increase for ““urban,” which result in a 2.54% increase in the overall accuracy (OA, i.e.,
the percentage of correctly classified test samples) and in a 2.45% increase in the average
accuracy (AA, i.e., the average of the accuracies obtained on the five classes).

Furthermore, for the sake of comparison, Table 2.1 also shows the results obtained by the
contextual MRF-ICM classifier, applied by using a standard “‘trial-and-error” parameter-
setting procedure (TE-ICM). Specifically, fixing® A = 1, the value of A, yielding the highest
value of OA on the training set has been searched exhaustively in the range [0,20] with
discretization step 0.2. The value selected exhaustively by TE-ICM was A, =11.20, which is
quite close to the value computed automatically by the proposed procedure. Accordingly,
the classification accuracies obtained by HK-ICM and TE-ICM on both the training and test
sets were very similar (Table 2.1).

2.4.2 Experiment IlI: Spatio-Temporal MRF Model for Two-Date Multi-Temporal
Image Classification

As a second experiment, we addressed the problem of supervised multi-temporal classi-
fication of two co-registered images, Iy and I;, acquired over the same ground area at

3According to the minimum-energy decision rule, this choice causes no loss of generality, as the classification
result is affected only by the relative weight A,/A; between the two parameters and not by their absolute values.



52 Image Processing for Remote Sensing

FIGURE 2.2

Data sets employed for the experiments: (a) band TM-3 of the multi-spectral image acquired in April, 1994, and
employed in Experiment [; (b) ERS-2 channel (after histogram equalization) of the multi-sensor image acquired
in October, 2000, and employed in Experiment II; (c) XSAR channel (after histogram equalization) of the SAR
multi-frequency image acquired in April 16, 1994, and employed in Experiment III.

different times, t; and t; (f; > fo). Specifically, the spatio-temporal mutual MRF model
proposed in Ref. [7] is adopted that introduces an energy function taking into account
both the spatial context (related to the correlation among neighboring pixels in the same
image) and the temporal context (related to the correlation between distinct images of the
same area). Let us denote by M;, xj, and w;; the number of classes in [;, the feature vector
of the k-th pixel in [; (k=1,2, ..., N), and the i-th class in I; (i=1,2, ..., M), respectively
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(j=0,1). Focusing, for instance, on the classification of the first-date image I,, the context
of the k-th pixel includes two distinct sets of labels: (1) the set Sy of labels of the spatial
context, that is, the labels of the 8 pixels surrounding the k-th pixel in I, and (2) the set T
of labels of the temporal context, that is, the labels of the pixels lying in I; inside a 3 x 3
window centered on the k-th pixel (k=1,2, ...,N) [7]. Accordingly, three energy contri-
butions are introduced, that is, a spectral and a spatial term (as in Experiment I), and an
additional temporal term, thatis, (i=1,2, ..., My k=1,2, ..., N):

Ex(woilxor) = —Inp(xoclwn),  Ea(woilSor) = — Y S(wo, wpy)

ijESOk

E3(wilTor) = — Y Plwoilwr)) (2.19)

w1;€Tox

where p(xox|wo;) is an estimate of the PDF p(xox|wo;) of a feature vector xox (k=1,2, ..., N)
conditioned to the class wg,;, and P(w0i|w1j) is an estimate of the transition probability
between class w,; at time ¢; and class w; at time to (i=1,2, ..., My;j=1,2, ..., M) [7]. A
similar 3-component energy function is also introduced at the second date; hence, three
parameters have to be set at date f; (namely, Ag1, Aoz, and Ag3) and three other parameters
at date #; (namely, A11, A12, and Aq3).

In the present experiment, HK-ICM was applied to a two-date multi-temporal data set,
consisting of two 870 x 498 pixel-sized images acquired over the same ground area as in
Experiment I in October, 2000 and July, 2001, respectively. At both acquisition dates, eight
Landsat-7 ETM+ bands were available, and a further ERS-2 channel (C-band, VV polar-
ization) was also available in October, 2000 (Figure 2.2b). The same five thematic classes,
as considered in Experiment I were considered in the October, 2000 scene, while the July,
2001 image also presented a further “agricultural’ class. For all the classes, training and
test data were available (Table 2.2).

Due to the multi-sensor nature of the October, 2000 image, a nonparametric technique
was employed in the noncontextual step. Specifically, the dependence tree classifier
(DTC) approach was adopted that approximates each multi-variate class-conditional
PDF as a product of automatically selected bivariate PDFs [51]. As proposed in Ref. [7],
the Parzen window method [30], applied with Gaussian kernels, was used to model such
bivariate PDFs. In particular, to avoid the usual “trial-and-error’”” selection of the kernel-
width parameters involved by the Parzen method, we adopted the simple “reference
density”” automatization procedure, which computes the kernel width by asymptotically
minimizing the “mean integrated square error”” functional, according to a given reference
model for the unknown PDF (for further details on the automatic kernel-width selection
for Parzen density estimation, we refer the reader to Refs. [52,53]). The “‘reference
density” approach is chosen for its simplicity and short computation time; in particular,
it is applied according to a Gaussian reference density for the kernel widths of the ETM+
features [53] and to a Rayleigh density for the kernel widths of the ERS-2 feature (for
further details on this SAR-specific kernel-width selection approach, we refer the reader
to Ref. [54]). The resulting PDF estimates were fed to an MAP classifier together with
prior-probability estimates (computed as relative frequencies on the training set) to
generate an initial noncontextual classification map for each date.

During the noncontextual step, transition-probability estimates were computed as
relative frequencies on the two initial maps (i.e., P(w0i|w1j) was computed as the ratio
n;;/m; between the number n;; of pixels assigned both to wy; in Iy and to w,; in I; and
the total number m; of pixels assigned to wyjin Iy; i=1,2,..., My; j =1,2,...,M).
The energy-difference and the Ho-Kashyap steps were applied first to the October,
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2000 image, converging to (1.06,0.95,1.97) in 2632 iterations, and then to the July, 2001
image, converging to (1.00,1.00,1.01) in only 52 iterations. As an example, the convergent
behavior of the parameter values during the Ho—Kashyap iterations for the October, 2000
image is shown in Figure 2.3.

The classification accuracies obtained by ICM, applied to the spatio-temporal model of
Equation 2.19 with these parameter values, are shown in Table 2.2, together with the
results of the noncontextual DTC algorithm. Also in this experiment, HK-ICM provided
good classification accuracies at both dates, specifically yielding large accuracy increases
for several classes as compared with the noncontextual DTC initialization (in particular,
“urban’ at both dates, “wet soil”” in October, 2000, and “wood’” in June, 2001).

Also for this experiment, we compared the results obtained by HK-ICM with the ones
provided by the MRF-ICM classifier with a “trial-and-error” parameter setting (TE-ICM,
Table 2.2). Fixing Ag; =A11 =1 (as in Experiment I) at both dates, a grid search was performed
to identify the values of the other parameters that yielded the highest overall accuracies on
the training set at the two dates. In general, this would require an interactive optimization of
four distinct parameters (namely, Ay, Ags, A12, and Aq3). To reduce the time taken by this
interactive procedure, the restrictions Ao, =A1 and Ag3 =A13 were adopted, thus assigning
the same weight A, to the two spatial energy contributions and the same weight A5 to the two
temporal contributions, and performing a grid search in a two-dimensional (and not four-
dimensional) space. The adopted search range was [0,10] for both parameters with discreti-
zation step 0.2: for each combination of (A5, A3), ICM was run until convergence and the
resulting classification accuracies on the training set were computed.

A global maximum of the average of the two training-set OAs obtained at the two dates
was reached for A, =9.8 and A3 =2.6: the corresponding accuracies (on both the training
and test sets) are shown in Table 2.2. This optimal parameter vector turns out to be quite
different from the solution automatically computed by the proposed method. The train-
ing-set accuracies of TE-ICM are better than the ones of HK-ICM; however, the difference
between the OAs provided on the training set by the two approaches is only 0.44% in
October, 2000 and 0.48% in June, 2001, and the differences between the AAs are only
0.17% and 0.47%, respectively. This suggests that, although identifying different param-
eter solutions, the proposed automatic approach and the standard interactive one allow
achieving similar classification performances. A similar small difference of performance
can also be noted between the corresponding test-set accuracies.

2.2

1.8 1

1.6 1

1.4

1 401 801 1201 1601 2001 2401
Ho—Kashyap iteration

FIGURE 2.3
Experiment II: Plots of behaviors of the “spectral” parameter A¢;, the “’spatial” parameter Ao, and the ““tem-
poral” parameter A3 versus the number of Ho—Kashyap iterations for the October, 2000, image.
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2.4.3 Experiment llI: Spatio-Temporal MRF Model for Multi-Temporal Classification
of Image Sequences

As a third experiment, HK-ICM was applied to the multi-temporal mutual MRF model (see
Section 2.2) extended to the problem of supervised classification of image sequences [7]. In
particular, considering, a sequence {Iy, I, I} of three co-registered images acquired over the
same ground area at times ty, 1, t5, respectively (fo < t; < t5), the mutual model is generalized
by introducing an energy function with four contributions at the intermediate date t,, thatis,
a spectral and a spatial energy term (namely, E;(-) and E,(-)) expressed as in Equation 2.19
and two distinct temporal energy terms, Es(-) and E4(-), related to the backward temporal
correlation of I; with the previous image Iy and to the forward temporal correlation of I; with
I,, respectively [7]. For the first and last images in the sequence (i.e., Iy and I,), only one
typology of temporal energy is well defined (in particular, only the forward temporal energy
E;() for I and only the backward energy E4(-) for I;). All the temporal energy terms are
computed in terms of transition probabilities, as in Equation 2.19. Therefore, four parameters
(A11,A12,A13,and A 14) have to be set at date ¢, while only three parameters are needed at date
to (namely, Ag1, Agz, and Ag3) or at date £, (namely, Az1, Azo, and Asy).

Specifically, a sequence of three 700 x 280 pixel-sized co-registered multi-frequency
SAR images, acquired over an agricultural area near the city of Pavia in April 16, 17, and
18, 1994, was used in the experiment (the ground area is not the same as the one
considered in Experiments I and II, although the two regions are quite close to each
other). At each date, a 4-look XSAR band (VV polarization) and three 4-look SIR-C-bands
(HH, HV, and TP (total power)) were available. The observed scene at the three dates
presented two main classes, that is, “wet soil” and “’bare soil,” and the temporal evolu-
tion of these classes between April 16 and April 18 was due to the artificial flooding
processes caused by rice cultivation. The PDF estimates and the initial classification maps
were computed using the DTC-Parzen method (as in Experiment II) applied here with a
kernel-width optimized according again to the SAR-specific method developed in Ref.
[54] and based on a Rayleigh reference density. As in Experiment II, the transition
probabilities were estimated as relative frequencies on the initial noncontextual maps.
Specifically, the Ho—Kashyap step was applied separately to set the parameters at each
date, converging to (0.97,1.23,1.56) in 11510 iterations for April 16, to (1.12,1.03,0.99,1.28)
in 15092 iterations for April 17, and to (1.00,1.04,0.97) in 2112 iterations for April 18.

As shown in Table 2.3, the noncontextual classification stage already provided good
accuracies, but the use of the contextual information allowed a sharp increase in accuracy to
be obtained at all the three dates (i.e., +6.59%, +4.82%, and +7.22% in OA for April 16, 17,
and 18, respectively, and +4.77%, +3.09%, and +4.94% in AA, respectively), thus suggest-
ing the effectiveness of the parameter values selected by the developed algorithm. In
particular, as shown in Figure 2.4 with regard to the April 16 image, the noncontextual
DTC maps (e.g., Figure 2.4a) were very noisy, due to the impact of the presence of speckle in
the SAR data on the classification results, whereas the contextual HK-ICM maps (e.g.,
Figure 2.4b) were far less affected by speckle, because of the integration of contextual
information in the classification process. It is worth noting that no preliminary despeckling
procedure was applied to the input SIR-C/XSAR images before classifying them.

Also for this experiment, in Table 2.3, we present the results obtained by searching
exhaustively for the MRF parameters yielding the best training-set accuracies. As in
Experiment II, for the ““trial-and-error”” parameter optimization the following restrictions
were adopted: /\01:)\11:/\2121, A02:A12:/\22:Az, and )\03:)\13:/\14:)\24 :/\3
(i.e., a unitary value was used for the ““spectral” parameters, the same weight A, was
assigned to all the spatial energy contributions employed at the three dates, and the same
weight A; was associated with all the temporal energy terms). Therefore, the number of
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(b)

FIGURE 2.4

Experiment III: Classification maps for the April 16, image provided by: (a) the noncontextual DTC classifier; (b) the
proposed contextual HK-ICM classifier. Color legend: white = “wetsoil,” grey = ““dry soil,”” black = not classified
(not classified pixels are present where the DTC-Parzen PDF estimates exhibit very low values for both classes).

independent parameters to be set interactively was reduced from 7 to 2. Again the search
range [0,10] (discretized with step 0.2) was adopted for both parameters and, for each
couple (A3, A3), ICM was run up to convergence. Then, the parameter vector yielding the
best classification result was chosen. In particular, the average of the three OAs on
the training set at the three dates exhibited a global maximum for A, =1 and A;=0.4.
The corresponding accuracies are given in Table 2.3 and denoted by TE-ICM. As noted
with regard to Experiment II, although the parameter vectors selected by the proposed
automatic procedure and by the interactive ““trial-and-error” one were quite different, the
classification performances achieved by the two methods on the training set were very
similar (and very close or equal to 100%). On the other hand, in most cases the test-set
accuracies obtained by HK-ICM are even better than the ones given by TE-ICM. These
results can be interpreted as a consequence of the fact that, to make the computation
time for the exhaustive parameter search tractable, the above-mentioned restrictions on
the parameter values were used when applying TE-ICM, whereas HK-ICM optimized all
the MRF parameters, without any need for additional restrictions. The resulting TE-ICM
parameters were effective for the classification of the training set (as they were specifically
optimized toward this end), but they yielded less accurate results on the test set.

2.5 Conclusions

In the present chapter, an innovative algorithm has been proposed that addresses the
problem of the automatization of the parameter-setting operations involved by MRF
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models for ICM-based supervised image classification. The method is applicable to a
wide class of MRF models (i.e., the models whose energy functions can be expressed
as weighted sums of distinct energy contributions), and expresses the parameter
optimization as a linear discrimination problem, solved by using the Ho-Kashyap
method. In particular, the theoretical properties known for this algorithm in the context
of linear classifier design still holds also for the proposed method, thus ensuring a good
convergent behavior.

The numerical results proved the capability of HK-ICM to select automatically
parameter values that can yield accurate contextual classification maps. These results
have been obtained for several different MRF models, dealing both with single-date
supervised classification and with multi-temporal classification of two-date or multi-
date imagery, which suggests a high flexibility of the method. This is further confirmed
by the fact that good classification results were achieved on different typologies of remote
sensing data (i.e., multi-spectral, optical-SAR multi-source, and multi-frequency SAR)
and with different PDF estimation strategies (both parametric and nonparametric).

In particular, an interactive choice of the MRF parameters that selects through an
exhaustive grid search the parameter values that provide the best performances on
the training set yielded results very similar to the ones obtained by the proposed
HK-ICM methodology in terms of classification accuracy. Specifically, in the first experi-
ment, HK-ICM automatically identified parameter values quite close to the ones selected
by this “trial-and-error”” procedure (thus providing a very similar classification map),
while in the other experiments, HK-ICM chose parameter values different from the ones
obtained by the “trial-and-error” strategy, although generating classification results
with similar (Experiment II) or even better (Experiment III) accuracies. The application
of the “trial-and-error”” approach in acceptable execution times required the definition of
suitable restrictions on the parameter values to reduce the dimension of the parameter
space to be explored. Such restrictions are not needed by the proposed method, which
turns out to be a good compromise between accuracy and level of automatization, as
it allows obtaining very good classification results, although avoiding completely the
time-consuming phase of ““trial-and-error”” parameter setting.

In addition, in all the experiments, the adopted MRF models yielded a significant
increase in accuracy, as compared with the initial noncontextual results. This further
highlights the advantages of MRF models, which effectively exploit the contextual
information in remote sensing image classification, and further confirms the usefulness
of the proposed technique in automatically setting the parameters of such models. The
proposed algorithm allows one to overcome the usual limitation on the use of MRF
techniques in supervised image classification, consisting in the lack of automatization
of such techniques, and supports a more extensive use of this powerful classification
approach in remote sensing.

It is worth noting that HK-ICM optimizes the MRF parameter vector according to the
initial classification maps provided as an input to ICM: the resulting optimal parameters
are then employed to run ICM up to convergence. A further generalization of the method
would adapt automatically the MRF parameters also during the ICM iterative process by
applying the proposed Ho-Kashyap-based method at each ICM iteration or according to
a different predefined iterative scheme. This could allow a further improvement in
accuracy, although requiring one to run the Ho-Kashyap algorithm not once but several
times, thus increasing the total computation time of the contextual classification process.
The effect of this combined optimization strategy on the convergence of ICM is an issue
worth being investigated.
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3.1 Introduction

Ensemble classification methods train several classifiers and combine their results
through a voting process. Many ensemble classifiers [1,2] have been proposed. These
classifiers include consensus theoretic classifiers [3] and committee machines [4]. Boost-
ing and bagging are widely used ensemble methods. Bagging (or bootstrap aggregating)
[5] is based on training many classifiers on bootstrapped samples from the training set
and has been shown to reduce the variance of the classification. In contrast, boosting uses
iterative re-training, where the incorrectly classified samples are given more weight in
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successive training iterations. This makes the algorithm slow (much slower than bagging)
while in most cases it is considerably more accurate than bagging. Boosting generally
reduces both the variance and the bias of the classification and has been shown to be a
very accurate classification method. However, it has various drawbacks: it is computa-
tionally demanding, it can overtrain, and is also sensitive to noise [6]. Therefore, there is
much interest in investigating methods such as random forests.

In this chapter, random forests are investigated in the classification of hyperspectral and
multi-source remote sensing data. A random forest is a collection of classification trees or
treelike classifiers. Each tree is trained on a bootstrapped sample of the training data, and at
each node in each tree the algorithm only searches across a random subset of the features to
determine a split. To classify an input vector in a random forest, the vector is submitted as
an input to each of the trees in the forest. Each tree gives a classification, and it is said that
the tree votes for that class. In the classification, the forest chooses the class having the most
votes (over all the trees in the forest). Random forests have been shown to be comparable to
boosting in terms of accuracies, but without the drawbacks of boosting. In addition, the
random forests are computationally much less intensive than boosting.

Random forests have recently been investigated for classification of remote sensing
data. Ham et al. [7] applied them in the classification of hyperspectral remote sensing data.
Joelsson et al. [8] used random forests in the classification of hyperspectral data from
urban areas and Gislason et al. [9] investigated random forests in the classification of
multi-source remote sensing and geographic data. All studies report good accuracies,
especially when computational demand is taken into account.

The chapter is organized as follows. Firstly random forest classifiers are discussed.
Then, two different building blocks for random forests, that is, the classification and
regression tree (CART) and the binary hierarchical classifier (BHC) approaches are
reviewed. In Section 3.4, random forests with the two different building blocks are
discussed. Experimental results for hyperspectral and multi-source data are given in
Section 3.5. Finally, conclusions are given in Section 3.6.

3.2 The Random Forest Classifier

A random forest classifier is a classifier comprising a collection of treelike classifiers.
Ideally, a random forest classifier is an i.i.d. randomization of weak learners [10]. The
classifier uses a large number of individual decision trees, all of which are trained (grown)
to tackle the same problem. A sample is decided to belong to the most frequently
occurring of the classes as determined by the individual trees.

The individuality of the trees is maintained by three factors:

1. Each tree is trained using a random subset of the training samples.

2. During the growing process of a tree the best split on each node in the tree is
found by searching through m randomly selected features. For a data set with M
features, m is selected by the user and kept much smaller than M.

3. Every tree is grown to its fullest to diversify the trees so there is no pruning.

As described above, a random forest is an ensemble of treelike classifiers, each trained
on a randomly chosen subset of the input data where final classification is based on a
majority vote by the trees in the forest.
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Each node of a tree in a random forest looks to a random subset of features of fixed size
m when deciding a split during training. The trees can thus be viewed as random vectors
of integers (features used to determine a split at each node). There are two points to note
about the parameter m:

1. Increasing the correlation between the trees in the forest by increasing m,
increases the error rate of the forest.

2. Increasing the classification accuracy of every individual tree by increasing m,
decreases the error rate of the forest.

An optimal interval for m is between the somewhat fuzzy extremes discussed above.
The parameter m is often said to be the only adjustable parameter to which the forest is
sensitive and the “optimal”” range for m is usually quite wide [10].

3.2.1 Derived Parameters for Random Forests

There are three parameters that are derived from the random forests. These parameters
are the out-of-bag (OOB) error, the variable importance, and the proximity analysis.

3.2.1.1 Out-of-Bag Error

To estimate the test set accuracy, the out-of-bag samples (the remaining training set
samples that are not in the bootstrap for a particular tree) of each tree can be run down
through the tree (cross-validation). The OOB error estimate is derived by the classification
error for the samples left out for each tree, averaged over the total number of trees. In
other words, for all the trees where case n was OOB, run case n down the trees and note if
it is correctly classified. The proportion of times the classification is in error, averaged
over all the cases, is the OOB error estimate. Let us consider an example. Each tree is
trained on a random 2/3 of the sample population (training set) while the remaining 1/3
is used to derive the OOB error rate for that tree. The OOB error rate is then averaged over
all the OOB cases yielding the final or total OOB error. This error estimate has been shown
to be unbiased in many tests [10,11].

3.2.1.2 Variable Importance

For a single tree, run it on its OOB cases and count the votes for the correct class. Then,
repeat this again after randomly permuting the values of a single variable in the OOB
cases. Now subtract the correctly cast votes for the randomly permuted data from the
number of correctly cast votes for the original OOB data. The average of this value over all
the forest is the raw importance score for the variable [5,6,11].

If the values of this score from tree to tree are independent, then the standard error can
be computed by a standard computation [12]. The correlations of these scores between
trees have been computed for a number of data sets and proved to be quite low [5,6,11].
Therefore, we compute standard errors in the classical way: divide the raw score by its
standard error to get a z-score, and assign a significance level to the z-score assuming
normality [5,6,11].

3.2.1.3 Proximities

After a tree is grown all the data are passed through it. If cases k and n are in the same
terminal node, their proximity is increased by one. The proximity measure can be used
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(directly or indirectly) to visualize high dimensional data [5,6,11]. As the proximities are
indicators on the “distance” to other samples this measure can be used to detect outliers
in the sense that an outlier is ““far’”” from all other samples.

3.3 The Building Blocks of Random Forests

Random forests are made up of several trees or building blocks. The building blocks
considered here are CART, which partition the input data, and the BHC trees, which
partition the labels (the output).

3.3.1 Classification and Regression Tree

CART is a decision tree where splits are made on a variable/feature/dimension resulting
in the greatest change in impurity or minimum impurity given a split on a variable in the
data set at a node in the tree [12]. The growing of a tree is maintained until either the
change in impurity has stopped or is below some bound or the number of samples left to
split is too small according to the user.

CART trees are easily overtrained, so a single tree is usually pruned to increase its
generality. However, a collection of unpruned trees, where each tree is trained to its
fullest on a subset of the training data to diversify individual trees can be very useful.
When collected in a multi-classifier ensemble and trained using the random forest
algorithm, these are called RF-CART.

3.3.2 Binary Hierarchy Classifier Trees

A binary hierarchy of classifiers, where each node is based on a split regarding labels and
output instead of input as in the CART case, are naturally organized in trees and can as
such be combined, under similar rules as the CART trees, to form RF-BHC. In a BHC, the
best split on each node is based on (meta-) class separability starting with a single meta-
class, which is split into two meta-classes and so on; the true classes are realized in the
leaves. Simultaneously to the splitting process, the Fisher discriminant and the corre-
sponding projection are computed, and the data are projected along the Fisher direction
[12]. In “Fisher space,” the projected data are used to estimate the likelihood of a sample
belonging to a meta-class and from there the probabilities of a true class belonging to a
meta-class are estimated and used to update the Fisher projection. Then, the data are
projected using this updated projection and so forth until a user-supplied level of
separation is acquired. This approach utilizes natural class affinities in the data, that is,
the most natural splits occur early in the growth of the tree [13]. A drawback is the
possible instability of the split algorithm. The Fisher projection involves an inverse of
an estimate of the within-class covariance matrix, which can be unstable at some nodes of
the tree, depending on the data being considered and so if this matrix estimate is singular
(to numerical precision), the algorithm fails.

As mentioned above, the BHC trees can be combined to an RF-BHC where the best
splits on classes are performed on a subset of the features in the data to diversify
individual trees and stabilize the aforementioned inverse. Since the number of leaves in
a BHC tree is the same as the number of classes in the data set the trees themselves can be
very informative when compared to CART-like trees.
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3.4 Different Implementations of Random Forests
3.4.1 Random Forest: Classification and Regression Tree

The RF-CART approach is based on CART-like trees where trees are grown to minimize
an impurity measure. When trees are grown using a minimum Gini impurity criterion
[12], the impurity of two descendent nodes in a tree is less than the parents. Adding up
the decrease in the Gini value for each variable over all the forest gives a variable
importance that is often very consistent with the permutation importance measure.

3.4.2 Random Forest: Binary Hierarchical Classifier

RE-BHC is a random forest based on an ensemble of BHC trees. In the RF-BHC, a split in
the tree is based on the best separation between meta-classes. At each node the best
separation is found by examining m features selected at random. The value of m can be
selected by trials to yield optimal results. In the case where the number of samples is
small enough to induce the “curse” of dimensionality, m is calculated by looking to a
user-supplied ratio R between the number of samples and the number of features; then m
is either used unchanged as the supplied value or a new value is calculated to preserve
the ratio R, whichever is smaller at the node in question [7]. An RF-BHC is uniform
regarding tree size (depth) because the number of nodes is a function of the number of
classes in the dataset.

3.5 Experimental Results

Random forests have many important qualities of which many apply directly to multi- or
hyperspectral data. It has been shown that the volume of a hypercube concentrates in the
corners and the volume of a hyper ellipsoid concentrates in an outer shell, implying that
with limited data points, much of the hyperspectral data space is empty [17]. Making a
collection of trees is attractive, when each of the trees looks to minimize or maximize
some information content related criteria given a subset of the features. This means that
the random forest can arrive at a good decision boundary without deleting or extracting
features explicitly while making the most out of the training set. This ability to handle
thousands of input features is especially attractive when dealing with multi- or hyper-
spectral data, because more often than not it is composed of tens to hundreds of features
and a limited number of samples. The unbiased nature of the OOB error rate can in some
cases (if not all) eliminate the need for a validation dataset, which is another plus when
working with a limited number of samples.

In experiments, the RF-CART approach was tested using a FORTRAN implementation
of random forests supplied on a web page maintained by Leo Breiman and Adele
Cutler [18].

3.5.1 Classification of a Multi-Source Data Set

In this experiment we use the Anderson River data set, which is a multi-source remote
sensing and geographic data set made available by the Canada Centre for Remote Sensing
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(CCRS) [16]. This data set is very difficult to classify due to a number of mixed forest type
classes [15].
Classification was performed on a data set consisting of the following six data sources:

1. Airborne multispectral scanner (AMSS) with 11 spectral data channels (ten
channels from 380 nm to 1100 nm and one channel from 8 pm to 14 pm)

2. Steep mode synthetic aperture radar (SAR) with four data channels (X-HH,
X-HV, L-HH, and L-HV)

Shallow mode SAR with four data channels (X-HH, X-HV, L-HH, and L-HV)
Elevation data (one data channel, where elevation in meters pixel value)

Slope data (one data channel, where slope in degrees pixel value)

AN

Aspect data (one data channel, where aspect in degrees pixel value)

There are 19 information classes in the ground reference map provided by CCRS. In the
experiments, only the six largest ones were used, as listed in Table 3.1. Here, training
samples were selected uniformly, giving 10% of the total sample size. All other
known samples were then used as test samples [15].

The experimental results for random forest classification are given in Table 3.2 through
Table 3.4. Table 3.2 shows line by line, how the parameters (number of split variables m
and number of trees) are selected. First, a forest of 50 trees is grown for various number of
split variables, then the number yielding the highest train accuracy (OOB) is selected,
and then growing more trees until the overall accuracy stops increasing is tried. The
overall accuracy (see Table 3.2) was seen to be insensitive to variable settings on
the interval 1022 split variables. Growing the forest larger than 200 trees improves the
overall accuracy insignificantly, so a forest of 200 trees, each of which considers all the
input variables at every node, yields the highest accuracy. The OOB accuracy in Table 3.2
seems to support the claim that overfitting is next to impossible using random forests in
this manner. However the “best” results were obtained using 22 variables so there is no
random selection of input variables at each node of every tree here because all variables
are being considered on every split. This might suggest that a boosting algorithm using
decision trees might yield higher overall accuracies.

The highest overall accuracies achieved with the Anderson River data set, known to the
authors at the time of this writing, have been reached by boosting using j4.8 trees [17].
These accuracies were 100% training accuracy (vs. 77.5% here) and 80.6% accuracy for test
data, which are not dramatically higher than the overall accuracies observed here
(around 79.0%) with a random forest (about 1.6 percentage points difference). Therefore,
even though m is not much less than the total number of variables (in fact equal), the

TABLE 3.1

Anderson River Data: Information Classes and Samples

Class No. Class Description Training Samples  Test Samples
1 Douglas fir (31-40m) 971 1250

2 Douglas fir (21-40m) 551 817

3 Douglas fir + Other species (3140 m) 548 701

4 Douglas fir + Lodgepole pine (21-30 m) 542 705

5 Hemlock + Cedar (31-40m) 317 405

6 Forest clearings 1260 1625

Total 4189 5503
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TABLE 3.2

Anderson River Data: Selecting m and the Number of Trees

Trees  Split Variables Runtime (min:sec) OOB acc. (%)  Test Set acc. (%)

50 1 00:19 68.42 71.58
50 5 00:20 74.00 75.74
50 10 00:22 75.89 77.63
50 15 00:22 76.30 78.50
50 20 00:24 76.01 78.14
50 22 00:24 76.63 78.10
100 22 00:38 77.18 78.56
200 22 01:06 77.51 79.01
400 22 02:06 77.56 78.81
1000 22 05:09 77.68 78.87
100 10 00:32 76.65 78.39
200 10 00:52 77.04 78.34
400 10 01:41 77.54 78.41
1000 10 04:02 77.66 78.25

22 split variables selected as the “best”” choice

random forest ensemble performs rather well, especially when running times are taken
into consideration. Here, in the random forest, each tree is an expert on a subset of the
data but all the experts look to the same number of variables and do not, in the strictest
sense, utilize the strength of random forests. However, the fact remains that the results are
among the best ones for this data set.

The training and test accuracies for the individual classes using random forests with
200 trees and 22 variables at each node are given in Table 3.3 and Table 3.4, respectively.
From these tables, it can be seen that the random forest yields the highest accuracies for
classes 5 and 6 but the lowest for class 2, which is in accordance with the outlier analysis
below.

A variable importance estimate for the training data can be seen in Figure 3.1, where
each data channel is represented by one variable. The first 11 variables are multi-spectral
data, followed by four steep-mode SAR data channels, four shallow-mode synthetic
aperture radar, and then elevation, slope, and aspect measurements, one channel each.
It is interesting to note that variable 20 (elevation) is the most important variable, followed
by variable 22 (aspect), and spectral channel 6 when looking at the raw importance
(Figure 3.1a), but slope when looking at the z-score (Figure 3.1b). The variable importance
for each individual class can be seen in Figure 3.2. Some interesting conclusions can be
drawn from Figure 3.2. For example, with the exception of class 6, topographic data

TABLE 3.3

Anderson River Data: Confusion Matrix for Training Data in Random Forest
Classification (Using 200 Trees and Testing 22 Variables at Each Node)

Class No. 1 2 3 4 5 6 %

1 764 126 20 35 1 57 78.68
2 75 289 38 8 1 43 52.45
3 32 62 430 21 0 51 7847
4 11 3 11 423 42 25 78.04
5 8 2 9 39 271 14 85.49
6 81 69 40 16 2 1070 84.92
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TABLE 3.4

Anderson River Data: Confusion Matrix for Test Data in Random Forest Classification
(Using 200 Trees and Testing 22 Variables at Each Node)

Class No. 1 2 3 4 5 6 %

1 1006 146 29 44 2 60 80.48
2 87 439 40 23 0 55 53.73
3 26 67 564 18 3 51 80.46
4 19 65 12 565 44 22 80.14
5 7 6 7 45 351 14 86.67
6 105 94 49 10 5 1423 87.57

(channels 20-22) are of high importance and then come the spectral channels (channels
1-11). In Figure 3.2, we can see that the SAR channels (channels 12-19) seem to be almost
irrelevant to class 5, but seem to play a more important role for the other classes. They
always come third after the topographic and multi-spectral variables, with the exception
of class 6, which seems to be the only class where this is not true; that is, the topographic
variables score lower than an SAR channel (Shallow-mode SAR channel number 17 or
X-HV).

These findings can then be verified by classifying the data set according to only the
most important variables and compared to the accuracy when all the variables are

Raw importance
T T

2 4 6 8 10 12 14 16 18 20 22
(b) Variable (dimension) number

FIGURE 3.1
Anderson river training data: (a) variable importance and (b) z-score on raw importance.
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FIGURE 3.2

Anderson river training data: variable importance for each of the six classes.

included. For example leaving out variable 20 should have less effect on classification
accuracy in class 6 than on all the other classes.

A proximity matrix was computed for the training data to detect outliers. The results of this
outlier analysis are shown in Figure 3.3, where it can be seen that the data set is difficult for
classification as there are several outliers. From Figure 3.3, the outliers are spread over all
classes—with a varying degree. The classes with the least amount of outliers (classes 5 and 6)
are indeed those with the highest classification accuracy (Table 3.3 and Table 3.4). On the
other hand, class 2 has the lowest accuracy and the highest number of outliers.

In the experiments, the random forest classifier proved to be fast. Using an Intel®
Celeron® CPU 2.20-GHz desktop, it took about a minute to read the data set into memory,
train, and classify the data set, with the settings of 200 trees and 22 split variables when
the FORTRAN code supplied on the random forest web site was used [18]. The running
times seem to indicate a linear time increase when considering the number of trees. They
are seen along with a least squares fit to a line in Figure 3.4.

3.5.1.1 The Anderson River Data Set Examined with a Single CART Tree

We look to all of the 22 features when deciding a split in the RF-CART approach above, so
it is of interest here to examine if the RF-CART performs any better than a single CART
tree. Unlike the RF-CART, a single CART is easily overtrained. Here we prune the CART
tree to reduce or eliminate any overtraining features of the tree and hence use three data
sets, a training set, testing set (used to decide the level of pruning), and a validation set to
estimate the performance of the tree as a classifier (Table 3.5 and Table 3.6).



70 Image Processing for Remote Sensing

Outliers in the training data

20 = T — . | |
0 | Wittt
| Lol L | I l | Al : ‘ |1 ik | Lol Ile b i i ;
500 1000 1500 2000 2500 3000 3500 4000
Sample number
Class 1 Class 2
20 T 20 T T
|
107 10} |
200 400 600 800 100 200 300 400 500
Class 3 Class 4
20 - T ' " T 7 20 - " " T 1
10 -
100 200 300 400 500 100 200 300 400 500
Class 5 Class 6
20 ; ; 20 "
10 | 10!
I L " s
0 <M AL b Lt stdnttinlladuls 0 i Wi :
50 100 150 200 250 300 200 400 600 800 1000 1200
Sample number (within class) Sample number (within class)
FIGURE 3.3

Anderson River training data: outlier analysis for individual classes. In each case, the x-axis (index) gives the
number of a training sample and the y-axis the outlier measure.
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FIGURE 3.4
Anderson river data set: random forest running times for 10 and 22 split variables.
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TABLE 3.5
Anderson River Data Set: Training, Test, and Validation Sets
Training Test Validation
Class No. Class Description Samples Samples Samples
1 Douglas fir (31-40m) 971 250 1000
2 Douglas fir (21-40m) 551 163 654
3 Douglas fir + Other species (31-40 m) 548 140 561
4 Douglas fir + Lodgepole pine (21-30 m) 542 141 564
5 Hemlock + Cedar (31-40 m) 317 81 324
6 Forest clearings 1260 325 1300
Total samples 4189 1100 4403

As can be seen in Table 3.6 and from the results of the RE-CART runs above (Table 3.2),
the overall accuracy is about 8 percentage points higher ((78.8/70.8—1)+100 = 11.3%)
than the overall accuracy for the validation set in Table 3.6. Therefore, a boosting effect

is present even though we need all the variables to determine a split in every tree in
the RF-CART.

3.5.1.2 The Anderson River Data Set Examined with the BHC Approach

The same procedure was used to select the variable m when using the RF-BHC as in the
RE-CART case. However, for the RF-BHC, the separability of the data set is an issue.
When the number of randomly selected features was less than 11, it was seen that a
singular matrix was likely for the Anderson River data set. The best overall performance
regarding the realized classification accuracy turned out to be the same as for the RF-
CART approach or for m = 22. The R parameter was set to 5, but given the number of
samples per (meta-)class in this data set, the parameter is not necessary. This means
22 is always at least 5 times smaller than the number of samples in a (meta-)class during
the growing of the trees in the RF-BHC. Since all the trees were trained using all the
available features, the trees are more or less the same, the only difference is that the trees
are trained on different subsets of the samples and thus the RF-BHC gives a very similar
result as a single BHC. It can be argued that the RF-BHC is a more general classifier due to
the nature of the error or accuracy estimates used during training, but as can be seen
in Table 3.7 and Table 3.8 the differences are small, at least for this data set and
no boosting effect seems to be present when using the RF-BHC approach when compared
to a single BHC.

TABLE 3.6

Anderson River Data Set: Classification Accuracy (%) for Training, Test, and Validation Sets

Class Description Training Test Validation
Douglas fir (31-40m) 87.54 73.20 71.30
Douglas fir (21-40m) 77.50 47.24 46.79
Douglas fir + Other species (31-40 m) 87.96 70.00 72.01
Douglas fir + Lodgepole pine (21-30 m) 84.69 68.79 69.15
Hemlock + Cedar (31-40 m) 90.54 79.01 77.78
Forest clearings 90.08 81.23 81.00

Ovwerall accuracy 86.89 71.18 70.82
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TABLE 3.7

Anderson River Data Set: Classification Accuracies in Percentage for
a Single BHC Tree Classifier

Class Description Training Test
Douglas fir (31-40m) 50.57 50.40
Douglas fir (21-40m) 4791 43.57
Douglas fir 4+ Other species (31-40 m) 58.94 59.49
Douglas fir + Lodgepole pine (21-30 m) 72.32 67.23
Hemlock + Cedar (31-40 m) 77.60 73.58
Forest clearings 71.75 72.80
Overall accuracy 62.54 61.02

3.5.2 Experiments with Hyperspectral Data

The data used in this experiment were collected in the framework of the HySens project,
managed by Deutschen Zentrum fur Luft-und Raumfahrt (DLR) (the German Aerospace
Center) and sponsored by the European Union. The optical sensor reflective optics system
imaging spectrometer (ROSIS 03) was used to record four flight lines over the urban area
of Pavia, northern Italy. The number of bands of the ROSIS 03 sensor used in the
experiments is 103, with spectral coverage from 0.43 pum through 0.86 wm. The flight
altitude was chosen as the lowest available for the airplane, which resulted in a spatial
resolution of 1.3 m per pixel.

The ROSIS data consist of nine classes (Table 3.9): The data were composed of 43923
samples, split up into 3921 training samples and 40002 for testing. Pseudo color image of
the area along with the ground truth mask (training and testing samples) are shown in
Figure 3.5.

This data set was classified using a BHC tree, an RE-BHC, a single CART, and an
RF-CART.

The BCH, RF-BHC, CART, and RF-CART were applied on the ROSIS data. The forest
parameters, m and R (for RE-BHC), were chosen by trials to maximize accuracies. The
growing of trees was stopped when the overall accuracy did not improve using additional
trees. This is the same procedure as for the Anderson River data set (see Table 3.2). For the
RF-BHC, R was chosen to be 5, m chosen to be 25 and the forest was grown to only 10
trees. For the RF-CART, m was set to 25 and the forest was grown to 200 trees. No feature
extraction was done at individual nodes in the tree when using the single BHC approach.

TABLE 3.8

Anderson River Data Set: Classification Accuracies in Percentage for
an RF-BHC, R = 5, m = 22, and 10 Trees

Class Description Training Test
Douglas fir (31-40m) 51.29 51.12
Douglas fir (21-40m) 45.37 41.13
Douglas fir + Other species (31-40 m) 59.31 57.20
Douglas fir 4+ Lodgepole pine (21-30 m) 72.14 67.80
Hemlock + Cedar (31-40 m) 77.92 71.85
Forest clearings 71.75 72.43

Ovwerall accuracy 62.43 60.37
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TABLE 3.9
ROSIS University Data Set: Classes and Number of Samples
Class No. Class Description Training Samples Test Samples
1 Asphalt 548 6,304
2 Meadows 540 18,146
3 Gravel 392 1,815
4 Trees 524 2912
5 (Painted) metal sheets 265 1,113
6 Bare soil 532 4,572
7 Bitumen 375 981
8 Self-blocking bricks 514 3,364
9 Shadow 231 795
Total samples 3,921 40,002

Classification accuracies are presented in Table 3.11 through Table 3.14. As in the single
CART case for the Anderson River data set, approximately 20% of the samples in the
original test set were randomly sampled into a new test set to select a pruning level for
the tree, leaving 80% of the original test samples for validation as seen in Table 3.10. All
the other classification methods used the training and test sets as described in Table 3.9.

From Table 3.11 through Table 3.14 we can see that the RF-BHC give the highest overall
accuracies of the tree methods where the single BHC, single CART, and the RF-CART
methods yielded lower and comparable overall accuracies. These results show that using
many weak learners as opposed to a few stronger ones is not always the best choice in
classification and is dependent on the data set. In our experience the RF-BHC approach is
as accurate or more accurate than the RF-CART when the data set consists of moderately

Class color (a) University ground truth

FIGURE 3.5
ROSIS University: (a) reference data and (b) gray scale image.
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TABLE 3.10
ROSIS University Data Set: Train, Test, and Validation Sets
Class No. Class Description Training Samples Test Samples Validation Samples
1 Asphalt 548 1,261 5,043
2 Meadows 540 3,629 14,517
3 Gravel 392 363 1,452
4 Trees 524 582 2,330
5 (Painted) metal sheets 265 223 890
6 Bare soil 532 914 3,658
7 Bitumen 375 196 785
8 Self-blocking bricks 514 673 2,691
9 Shadow 231 159 636
Total samples 3,921 8,000 32,002

to highly separable (meta-)classes, but for difficult data sets the partitioning algo-
rithm used for the BHC trees can fail to converge (inverse of the within-class covariance
matrix becomes singular to numerical precision) and thus no BHC classifier can be
realized. This is not a problem when using the CART trees as the building blocks partition
the input and simply minimize an impurity measure given a split on a node. The
classification results for the single CART tree (Table 3.11), especially for the two classes
gravel and bare-soil, may be considered unacceptable when compared to the other methods
that seem to yield more balanced accuracies for all classes. The classified images for the
results given in Table 3.12 through Table 3.14 are shown in Figure 3.6a through
Figure 3.6d.

Since BHC trees are of fixed size regarding the number of leafs it is worth examining
the tree in the single case (Figure 3.7).

Notice the siblings on the tree (nodes sharing a parent): gravel (3)/shadow (9), asphalt
(1)/bitumen (7), and finally meadows (2)/bare soil (6). Without too much stretch of the
imagination, one can intuitively decide that these classes are related, at least asphalt/
bitumen and meadows/bare soil. When comparing the gravel area in the ground truth
image (Figure 3.5a) and the same area in the gray scale image (Figure 3.5b), one can see
it has gray levels ranging from bright to relatively dark, which might be interpreted as an
intuitive relation or overlap between the gravel (3) and the shadow (9) classes. The self-
blocking bricks (8) are the class closest to the asphalt-bitumen meta-class, which again looks
very similar in the pseudo color image. So the tree more or less seems to place “‘naturally”

TABLE 3.11

Single CART: Training, Test, and Validation Accuracies in Percentage for ROSIS University Data Set
Class Description Training Test Validation
Asphalt 80.11 70.74 72.24
Meadows 83.52 75.48 75.80
Gravel 0.00 0.00 0.00
Trees 88.36 97.08 97.00
(Painted) metal sheets 97.36 91.03 86.07
Bare soil 46.99 24.73 26.60
Bitumen 85.07 82.14 80.38
Self-blocking bricks 84.63 92.42 92.27
Shadow 96.10 100.00 99.84

Owerall accuracy 72.35 69.59 69.98
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BHC: Training and Test Accuracies in Percentage for ROSIS

University Data Set

Class Training Test
Asphalt 78.83 69.86
Meadows 93.33 55.11
Gravel 72.45 62.92
Trees 91.60 92.20
(Painted) metal sheets 97.74 94.79
Bare soil 94.92 89.63
Bitumen 93.07 81.55
Self-blocking bricks 85.60 88.64
Shadow 94.37 96.35
Owerall accuracy 88.52 69.83

TABLE 3.13

RF-BHC: Training and Test Accuracies in Percentage for ROSIS

University Data Set

Class Training Test
Asphalt 76.82 71.41
Meadows 84.26 68.17
Gravel 59.95 51.35
Trees 88.36 95.91
(Painted) metal sheets 100.00 99.28
Bare soil 75.38 78.85
Bitumen 92.53 87.36
Self-blocking bricks 83.07 92.45
Shadow 96.10 99.50
Overall accuracy 82.53 75.16

TABLE 3.14

RE-CART: Train and Test Accuracies in Percentage for ROSIS

University Data Set

Class Training Test
Asphalt 86.86 80.36
Meadows 90.93 54.32
Gravel 76.79 46.61
Trees 92.37 98.73
(Painted) metal sheets 99.25 99.01
Bare soil 91.17 77.60
Bitumen 88.80 78.29
Self-blocking bricks 83.46 90.64
Shadow 94.37 97.23
Owerall accuracy 88.75 69.70
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(a) Single BHC (b) RF-BHC (c) Single CART (d) RF-CART

Class Number

FIGURE 3.6
ROSIS University: image classified by (a) single BHC, (b) RF-BHC, (c) single CART, and (d) RF-CART.

related classes close to one another in the tree. That would mean that classes 2, 6, 4, and 5
are more related to each other than to classes 3, 9, 1, 7, or 8. On the other hand, it is not
clear if (painted) metal sheets (5) are “‘naturally’”” more related to trees (4) than to bare soil (6)
or asphalt (1). However, the point is that the partition algorithm finds the ““clearest”
separation between meta-classes. Therefore, it may be better to view the tree as a separ-
ation hierarchy rather than a relation hierarchy. The single BHC classifier finds that class 5
is the most separable class within the first right meta-class of the tree, so it might not be
related to meta-class 2-6—4 in any “‘natural” way, but it is more separable along with these
classes when the whole data set is split up to two meta-classes.

FIGURE 3.7
The BHC tree used for classification of Figure 3.5
with left/right probabilities (%).
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3.6 Conclusions

The use of random forests for classification of multi-source remote sensing data and
hyperspectral remote sensing data has been discussed. Random forests should be con-
sidered attractive for classification of both data types. They are both fast in training and
classification, and are distribution-free classifiers. Furthermore, the problem with the
curse of dimensionality is naturally addressed by the selection of a low m, without having
to discard variables and dimensions completely. The only parameter random forests are
truly sensitive to is the number of variables m, the nodes in every tree draw at random
during training. This parameter should generally be much smaller than the total number
of available variables, although selecting a high m can yield good classification accuracies,
as can be seen above for the Anderson River data (Table 3.2).

In experiments, two types of random forests were used, that is, random forests based on
the CART approach and random forests that use BHC trees. Both approaches performed
well in experiments. They gave excellent accuracies for both data types and were shown
to be very fast.
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4.1 Introduction

Image classification for geostatistical data is one of the most important issues in the
remote-sensing community. Statistical approaches have been discussed extensively in
the literature. In particular, Markov random fields (MRFs) are used for modeling distri-
butions of land-cover classes, and contextual classifiers based on MRFs exhibit efficient
performances. In addition, various classification methods were proposed. See Ref. [3] for
an excellent review paper on classification. See also Refs. [1,4-7] for a general discussion
on classification methods, and Refs. [8,9] for backgrounds on spatial statistics.

In a paradigm of supervised learning, AdaBoost was proposed as a machine learning
technique in Ref. [10] and has been widely and rapidly improved for use in pattern
recognition. AdaBoost linearly combines several weak classifiers into a strong classifier.
The coefficients of the classifiers are tuned by minimizing an empirical exponential risk.
The classification method exhibits high performance in various fields [11,12]. In addition,
fusion techniques have been discussed [13-15].

In the present chapter, we consider contextual classification methods based on statistics
and machine learning. We review AdaBoost with binary class labels as well as multi-class
labels. The procedures for deriving coefficients for classifiers are discussed, and robust-
ness for loss functions is emphasized here. Next, contextual image classification methods
including Switzer’s smoothing method [1], MRF-based methods [16], and spatial boosting
[2,17] are introduced. Relationships among them are also pointed out. Spatial parallel boost
by meta-learning for multi-source and multi-temporal data classification is proposed.

The remainder of the chapter is organized as follows. In Section 4.2, AdaBoost is briefly
reviewed. A simple example with binary class labels is provided to illustrate AdaBoost.
Then, we proceed to the case with multi-class labels. Section 4.3 gives general boosting
methods to obtain the robustness property of the classifier. Then, contextual classifiers
including Switzer’s method, an MRF-based method, and spatial boosting are discussed.
Relationships among them are shown in Section 4.5. The exact error rate and the proper-
ties of the MRF-based classifier are given. Section 4.6 proposes spatial parallel boost
applicable to classification of multi-source and multi-temporal data sets. The methods
treated here are applied to a synthetic data set and two benchmark data sets, and the
performances are examined in Section 4.7. Section 4.8 concludes the chapter and mentions
future problems.

4.2 AdaBoost

We begin this section with a simple example to illustrate AdaBoost [10]. Later, AdaBoost
with multi-class labels is mentioned.
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4.2.1 Toy Example in Binary Classification

Suppose that a g-dimensional feature vector x € R? observed by a supervised example
labeled by +1 or —1 is available. Furthermore, let gx(x) be functions (classifiers) of the
feature vector x into label set {+1, —1} for k = 1,2, 3. If these three classifiers are equally
efficient, a new function, sign(fi(x)+f2(x) +f3(x)), is a combined classifier based on a
majority vote, where sign(z) is the sign of the argument z. Suppose that classifier f; is
the most reliable, f, has the next greatest reliability, and f; is the least reliable. Then, a new
function sign (B1f1(x) + Baf2(x) + Baf3(x)) is a boosted classifier based on a weighted vote,
where 81 > 8, > 3 are positive constants to be determined according to efficiencies of
the classifiers. Constants B, are tuned by minimizing the empirical risk, which will be
defined shortly.

In general, let i be the true label of feature vector x. Then, label y is estimated by a
signature, sign(F(x)), of a classification function F(x). Actually, if F(x)>0, then x
is classified into the class with label 1, otherwise into —1. Hence, if yF(x) < 0, vector x is
misclassified. For evaluating classifier F, AdaBoost in Ref. [10] takes the exponential loss
function defined by

Lexp(F | x, y) = exp {—yF(x)} 4.1)

The loss function Le.p(t) = exp(—t) vs. t = yF(x) is given in Figure 4.1. Note that the
exponential function assigns a heavy loss to an outlying example that is misclassified.
AdaBoost is apt to overlearn misclassified examples.

Let {(x;, y;) € R" x {+1, -1} |i=1,2,...,n} be a set of training data. The classification
function, F, is determined to minimize the empirical risk:

1< 1<
Rexp(F) = le Lewp(F | i, i) = - le exp {~yiF(x)} (42)

In the toy example above, F(x) is B1f1(x) + Baf2(x) + Baf3(x) and coefficients B1, B,, B3 are
tuned by minimizing the empirical risk in Equation 4.2. A fast sequential procedure for
minimizing the empirical risk is well known [11]. We will provide a new understanding
of the procedure in the binary class case as well as in the multi-class case in Section 4.2.3.

A typical classifier is a decision stump defined by a function § sign(x¥’ — t), where
5= +1,t e R and ¥ denotes the j-th coordinate of the feature vector x. Nevertheless,
each decision stump is poor. Finally, a linearly combined function of many stumps is
expected to be a strong classification function.

— exp
— logit
--- eta
— 0-1

- FIGURE 4.1
-3 -2 -1 0 1 2 3 Loss functions (loss vs. yF(x)).
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4.2.2 AdaBoost for Multi-Class Problems

We will give an extension of loss and risk functions to cases with multi-class labels.
Suppose that there are g possible land-cover classes Cy, ..., C,, for example, coniferous
forest, broad leaf forest, and water area. Let D = {1,...,n} be a training region with
n pixels over some scene. Each pixel i in region D is supposed to belong to one of the
g classes. We denote a set of all class labels by G = {1,...,g}. Let x; € R7 be a g-dimensional
feature vector observed at pixel i, and y; be its true label in label set G. Note that pixel i in
region D is a numbered small area corresponding to the observed unit on the earth.

Let F(x, k) be a classification function of feature vector x € R? and label k in set G. We
allocate vector x into the class with label yr € G by the following maximizer:

Yp = arg max F(x, k) 43)

keG
Typical examples of the strong classification function would be given by posterior
probability functions. Let p(x|k) be a class-specific probability density function of the
k-th class, Cy. Thus, the posterior probability of the label, Y = k, given feature vector x, is
defined by

plk|x) = p(x|K)/ > p(x|f) withkeG (4.4)

leG

which gives a strong classification function, where the prior distribution of class Cj is
assumed to be uniform. Note that the label estimated by posteriors p(k | x), or equivalently
by log posteriors log p(k | x), is just the Bayes rule of classification. Note also that p(k | x) is
a measure of the confidence of the current classification and is closely related to logistic
discriminant functions [18].

Let y € G be the true label of feature vector x and F(x) a classification function. Then, the
loss by misclassification into class label k is assessed by the following exponential loss
function:

Lexp(F, k| x, y) = exp {F(x, k) — F(x, y)} for k # y with k€ G (4.5)

This is an extension of the exponential loss (Equation 4.1) with binary classification.
The empirical risk is defined by averaging the loss functions over the training data set
{(xi, y) € R x G| i€ D} as

1 1
Rexp(F) = E Z ZLexp(Fr k | Xi, yz) = ; Z Z exp {F(Xir k) - F(Xi/ 3/1)} (46)

i€D k#y; i€D ky;

AdaBoost determines the classification function F to minimize exponential risk Rexp(F), in
which F is a linear combination of base functions.

4.2.3 Sequential Minimization of Exponential Risk with Multi-Class

Let f and F be fixed classification functions. Then, we obtain the optimal coefficient, B+,
which gives the minimum value of empirical risk Remp(F + B f):

B+ = arg min {Rexp(F +Bf)}/

FeR @.7)
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Applying procedure in Equation 4.7 sequentially, we combine classifiers f;, f5, ..., fr as

FO =0, FY = B,fi, F? = B1fi +Bofo, ..., FD = Bifi + Bofo + -+ + Brfr

where 7 is defined by the formula given in Equation 4.7 with F = F* = U and f = f,.

4.2.3.1 Case 1

Suppose that function f(-, k) takes values 0 or 1, and it takes 1 only once. In this case,
coefficient B, in Equation 4.7 is given by the closed form as follows. Let y; ¢ be the label of
pixel i selected by classifier f, and Dy be a subset of D classified correctly by f. Define

Vi(k) = F(x;, k) — F(x;, y;) and (k) = f(xi, k) — f(xi, vi) (4.8)
Then, we obtain

Rep+Bf) =Y > exp[Vi(k) + Bui(b)]

i=1 k#yi
=e Py N expVil+ &) exp{Vign}+ Y D> expiVik)]

i€Dy k#y; J€Dy j€Ds k#yi, Jis

=2 > > expVik) Y exp Vil + > > explVil  (49)

i€Dy key; j&Dr J&Dr k#yi, ¥

The last inequality is due to the relationship between the arithmetic and the geometric
means. The equality holds if and only if 8 = 8,, where

i€Dy k#y; j€Dr

B. = % log [Z > exp{Vi()}/ Y exp (Vi) (4.10)

The optimal coefficient, 8,, can be expressed as

> exp{Viin)}

1 1- Sp(f)} . €Dy
=_1 —_— h = .
B, > og{ o) with r(f) 'Z xp (Vi) + 42 S exp(Vil0] (4.11)

]ng lEDf k#y,'

In the binary class case, er(f) coincides with the error rate of classifier f.

4.2.3.2 Case2
If f(-, k) takes real values, there is no closed form of coefficient 8-. We must perform an
iterative procedure for the optimization of risk Remp. Using the Newton-like method, we
update estimate 8 at the t-th step as follows:
n n
B =IO =" vk exp [Vilk) + BY0i(0)]/ > Y vi(k)exp [Vilk) + BYvi(k)] (4.12)

i=1 k#yi i=1 ksty;
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where v,(k) and V;(k) are defined in the formulas in Equation 4.8. We observe that the con-
vergence of the iterative procedure starting from 8 =0 is very fast. In numerical
examples in Section 4.7, the procedure converges within five steps in most cases.

4.2.4 AdaBoost Algorithm

Now, we summarize an iterative procedure of AdaBoost for minimizing the empirical
exponential risk. Let {F} = {f : R7— G} be a set of classification functions, where G =
{1,...,g} is the label set. AdaBoost combines classification functions as follows:

« Find classification function fin F and coefficient 8 that jointly minimize empirical
risk Rexp(Bf) defined in Equation 4.6, for example, f; and B;.

* Consider empirical risk Rexp(B1f1 +Bf) with Bif; given from the previous step.
Then, find classification function f € {F} and coefficient 8 that minimize the
empirical risk, for example, f, and B,.

e This procedure is repeated T-times and the final classification function Fr =
B1 fi+ -+ Bifr is obtained.

* Test vector x € R7is classified into the label maximizing the final function Fy(x, k)
with respect to k € G.

Substituting exponential risk Rep, for other risk functions, we have different classification
methods. Risk functions Rjogit and R, Will be defined in the next section.

4.3 LogitBoost and EtaBoost

AdaBoost was originally designed to combine weak classifiers for deriving a strong
classifier. However, if we combine strong classifiers with AdaBoost, the exponential
loss assigns an extreme penalty for misclassified data. It is well known that AdaBoost is
not robust. In the multi-class case, this seems more serious than the binary class case.
Actually, this is confirmed by our numerical example in Section 4.7.3. In this section, we
consider robust classifiers derived by a loss function that is more robust than the expo-
nential loss function.

4.3.1 Binary Class Case

Consider binary class problems such that feature vector x with true label y € {1,-1} is
classified into class label sign (F(x)). Then, we take the logit and the eta loss functions
defined by

Liogit(F|x, y) = log[1 + exp {—yF(x)}] (4.13)
Le(F|x, y) = (1 — m)log[1 + exp {—yF(x)}] + n{-yF(x)} for 0 <n <1 (4.14)

The logit loss function is derived by the log posterior probability of a binomial distribu-
tion. The eta loss function, an extension of the logit loss, was proposed by Takenouchi and
Eguchi [19].
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Three loss functions given in Figure 4.1 are defined as follows:

Lexp(t) = exp (—t), Liogit(t) = log {1 + exp (-2t)} —log2 +1
and
Leta(t) = (1/2)Liogit(t) + (1/2)(—1) (4.15)

We see that the logit and the eta loss functions assign less penalty for misclassified data
than the exponential loss function does. In addition, the three loss functions are convex
and differentiable with respect to t. The convexity assures the uniqueness of the coeffi-
cient minimizing Remp(F + Bf) with respect to 8, where Remp denotes an empirical risk
function under consideration. The convexity makes the sequential minimization of the
empirical risk feasible.

For corresponding empirical risk functions, we define the empirical risks as follows:

Riogit(F) = % > " logl1 + exp {~yiF(xi)}], and (4.16)
i=1
Rea(F) = 13" log 1+ exp [~y @l] + 1 D (P (4.17)
i=1 i=1

4.3.2 Multi-Class Case
Let y be the true label of feature vector x, and F(x, k) a classification function. Then, we

define the following function in a similar manner to that of posterior probabilities:

exp {F(x, y)}
> ke exp (F(x, k)}

plogit(y | X) =
Using the function, we define the loss functions in the multi-class case as follows:

Llogit(F | X, y) = - 10g Plogit(]/ | x)
and

Laa(F 1% ) = (1= @ = D1l{—10g progie(y [0} + 1>, 108 progik | %

where 7 is a constant with 0 <7 <1/(g—1). Then empirical risks are defined by the average
of the loss functions evaluated by training data set {(x; y;) € R? x Gl|i € D} as

1< 1<
Riogi(F) =~ > Liogie(F | xi, 1) and  Rewa(F) =~ > _ Leta(F|xi, i) (4.18)
i=1 i=1

LogitBoost and EtaBoost aim to minimize logit risk function R.g;(F) and eta risk function
Reta(F), respectively. These risk functions are expected to be more robust than the expo-
nential risk function. Actually, EtaBoost is more robust than LogitBoost in the presence of
mislabeled training examples.
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4.4 Contextual Image Classification

Ordinary classifiers proposed for independent samples are of course utilized for image
classification. However, it is known that contextual classifiers show better performance
than noncontextual classifiers. In this section, contextual classifiers: the smoothing
method by Switzer [1], the MRF-based classifiers, and spatial boosting [17], will
be discussed.

4.4.1 Neighborhoods of Pixels

In this subsection, we define notations related to observations and two sorts of neighbor-
hoods. Let D = {1,...,n} be an observed area consisting of n pixels. A g-dimensional feature
vector and its observation at pixel i are denoted as X; and x;, respectively, for i in area D.
The class label covering pixel i is denoted by random variable Y;, where Y; takes an
element in the label set G = {1, ..., g}. All feature vectors are expressed in vector form as

X=X, ..., xXHTngx1 (4.19)
In addition, we define random label vectors as
Y=(Yy, ..., Y):inx1 and Y. =Y with deleted Yi:(n — 1) x 1 (4.20)

Recall that class-specific density functions are defined by p(x | k) with x € R7 for deriving
the posterior distribution in Equation 4.4. In the numerical study in Section 4.7, the
densities are fitted by homoscedastic g-dimensional Gaussian distributions, N,((k), %),
with common variance-covariance matrix 2, or heteroscedastic Gaussian distributions,
N, (m(k), 25), with class-specific variance-covariance matrices 2.

Here, we define neighborhoods to provide contextual information. Let d(i, j) denote the
distance between centers of pixels i and j. Then, we define two kinds of neighborhoods of
pixel i as follows:

U () ={jeD|di,j)=r} and N,()={jeD|=dG,j)=r (4.21)

where r =1, v2, 2, ..., which denotes the radius of the neighborhood. Note that subset
U,(i) constitutes an isotropic ring region. Subsets U,(i) with r =0, 1, V2, 2 are shown in
Figure 4.2. Here, we find that Uy(i) = {i}, N1(i) = U;(7) is the first-order neighborhood,
and N (i) = Uy (i) U U, 5(i) forms the second-order neighborhood of pixel i. In general, we
have N,(i) = Uy = =, Up(i) forr= 1.

(a)r=0

FIGURE 4.2
Isotropic neighborhoods U, (i) with center pixel i and radius r.
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4.4.2 MRFs Based on Divergence

Here, we will discuss the spatial distribution of the classes. A pairwise dependent MRF is
an important model for specifying the field. Let D(k, £) > 0 be a divergence between two
classes, Ci and C, (k # ¢), and put D(k, k) = 0. The divergence is employed for modeling
the MRF. In Potts model, D(k, ¢) is defined by Dy (k, ¢): = 1 if k # £:= 0 otherwise. Nishii
[18] proposed to take the squared Mahalanobis distance between homoscedastic Gaussian
distributions N,(p(k), %) defined by

D1 (pe(k), p(0) = {p(k) — (0= {plk) — p(0)) (4.22)

Nishii and Eguchi (2004) proposed to take Jeffreys divergence [{p(x|k) — p(x|)}
log{p(x | k)/p(x | £)}dx between densities p(x | k). The models are called divergence models.

Let Ai(g) be the average of divergences in the neighborhood N, (i) defined by Equation
4.21 as follows:

1S Dk y),  if NG | >1
Ai(k):{Nr(l)l fe%;(i) 4 N3 |

0 otherwise

for (i, k) e D x G (4.23)

where |S| denotes the cardinality of set S. Then, random variable Y; conditional on all the
other labels Y_; = y_; is assumed to follow a multinomial distribution with the following
probabilities:

exp {—BAi(k)}
> exp {—BA(0)}

LeG

for k€ G (4.24)

PI‘{Yi =k | Y_,' = Y—i} =

Here, B8 is a non-negative constant called the clustering parameter, or the granularity of
the classes, and A,(k) is defined by the formula given in Equation 4.23.

Parameter B characterizes the degree of the spatial dependency of the MRF. If 8 = 0,
then the classes are spatially independent. Here, radius r of neighborhood U,(i) denotes
the extent of spatial dependency. Of course, B, as well as 7, are parameters that need to be
estimated. Due to the Hammersley—Clifford theorem, conditional distribution in Equation
4.24 is known to specify the distribution of test label vector, Y, under the mild condition.
The joint distribution of test labels, however, cannot be obtained in a closed form. This
causes a difficulty in estimating the parameters specifying the MRF.

Geman and Geman [6] developed a method for the estimation of test labels by simu-
lated annealing. However, the procedure is time consuming. Besag [4] proposed an
iterative conditional mode (ICM) method, which is reviewed in Section 4.4.5.

4.4.3 Assumptions

Now, we make the following assumptions for deriving classifiers.

4.4.3.1 Assumption 1 (Local Continuity of the Classes)

If a class label of a pixel is k € G, then pixels in the neighborhood have the same class label
k. Furthermore, this is true for any pixel.

4.4.3.2 Assumption 2 (Class-Specific Distribution)

A feature vector of a sample from class C; follows a class-specific probability density
function p(x | k) for label k in G.
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4.4.3.3 Assumption 3 (Conditional Independence)

The conditional distribution of vector X in Equation 4.19 given label vector Y =y in
Equation 4.20 is given by 11, ¢ p p(x; | ¥,).

4.4.3.4 Assumption 4 (MRFs)

Label vector Y defined by Equation 4.20 follows an MRF specified by divergence (quasi-
distance) between the classes.

4.4.4 Switzer's Smoothing Method

Switzer [1] derived the contextual classification method (the smoothing method) under
Assumptions 1-3 with homoscedastic Gaussian distributions Ng(p(k), 2). Let i(x | k) be
its probability density function. Assume that Assumption 1 holds for neighborhoods
N,(-). Then, he proposed to estimate label y; of pixel i by maximizing the following joint
probability densities:

i 1K) x Wi, 1K) (wlx [ = @m) 02 |37 exp (~Da(x, w(k))/2})

with respect to label k € G, where D;(-,-) stands for the squared Mahalanobis distance in
Equation 4.22. The maximization problem is equivalent to minimizing the following
quantity:

Di(xi, mk) + Y Dalx;, (k) (4.25)
N

Obviously, Assumption 1 does not hold for the whole image. However, the method still
exhibits good performance, and the classification is performed very quickly. Thus, the
method is a pioneering work of contextual image classification.

4.4.5 ICM Method

Under Assumptions 2-4 with conditional distribution in Equation 4.24, the poste-
rior probability of Y; = k given feature vector X = x and label vector Y_; = y_; is ex-
pressed by

exp {—BA;(k)}p(x; | k)
> exp {—BAi(0)}p(x;| )

LeG

PriYi=k|X=x,Y_;i=y_;} = = pik|r, B) (4.26)

Then, the posterior probability Pr{Y = y | X = x} of label vector y is approximated by the
pseudo-likelihood

PL(y |, B) =[] pitvil . B) (4.27)
i=1

where posterior probability p; (y; | r, B) is defined by Equation 4.26. Pseudo-likelihood in
Equation 4.27 is used for accuracy assessment of the classification as well as for parameter
estimation. Here, class-specific densities p(x | k) are estimated using the training data.
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When radius r and clustering parameter 3 are given, the optimal label vector y, which
maximizes the pseudo-likelihood PL(y |7, B) defined by Equation 4.27, is usually esti-
mated by the ICM procedure [4]. At the (t + 1)-st step, [CM finds the optimal label, y,¢ ",
given y) for all test pixels i € D. This procedure is repeated until the convergence of the
label vector, for example y = y(r, 8) : n x 1. Furthermore, we must optimize a pair of

parameters (r, 8) by maximizing pseudo-likelihood PL(y(r, B) | 1, B).

4.4.6 Spatial Boosting

As shown in Section 4.2, AdaBoost combines classification functions defined over the
feature space. Of course, the classifiers give noncontextual classification. We extend
AdaBoost to build contextual classification functions, which we call spatial AdaBoost.

Define an averaged logarithm of the posterior probabilities (Equation 4.4) in neighbor-
hood U,(i) (Equation 4.21) by

1
S 1 )oif N >1
fr(x,k|z'>{ Tl 2z, 08 PE HUOI=T (o 5 o
0 otherwise

where x = (x;',..., x1)" : gn x 1. Therefore, the averaged log posterior f, (x, k | i) with
radius r = 0 is equal to the log posterior log p(k | x;) itself. Hence, the classification due to
function fy(x, k| i) is equivalent to a noncontextual classification based on the maximum-a-
posteriori (MAP) criterion. If the spatial dependency among the classes is not negligible,
then the averaged log posteriors fi(x, k|i) in the first-order neighborhood may have
information for classification. If the spatial dependency becomes stronger, then f.(x, k | i)
with a larger r is also useful. Thus, we adopt the average of the log posteriors f,(x, k | i) as a
classification function of center pixel i.

The efficiency of the averaged log posteriors as classification functions would be
intuitively arranged in the following order:

fO(x/ k | i)lfl(xl k|l)lf\/§(xl k ‘ i)/fZ(X/ k ‘ 1)/ Tty where x = (X{, R X?; T (429)

The coefficients for the above classification functions can be tuned by minimizing the
empirical risk given by Equation 4.6 or Equation 4.18. See Ref. [2] for possible candidates
for contextual classification functions.

The following is the contextual classification procedure based on the spatial boosting
method.

* Fix an empirical risk function, Remp(F), of classification function F evaluated over
training data set {(x; y;) € R’ x G | i € D}.

o Letfo (x, k| 0), f(x, k| 9), fﬁ (x,k | i),...,fr (x,k | i) be the classification functions
defined by Equation 4.28.

* Find coefficient 8 that minimizes empirical risk Remp (Bfo)- Put the optimal value
to Bo.

o If coefficient By is negative, quit the procedure. Otherwise, consider empirical
risk Remp(Bofo + B f1) with B fo obtained by the previous step. Then, find coeffi-
cient 8, which minimizes the empirical risk. Put the optimal value to ;.

o If B; is negative, quit the procedure. Otherwise, consider empirical risk Remp
(Bofo + Bifi + Bf,5)- This procedure is repeated, and we obtain a sequence of
positive coefficients B, 81, ..., B, for the classification functions.
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Finally, the classification function is derived by
Fi(x, k|i) = Bofox, k|1) + Bifi0x, ki) + -+ Bfx k|i), x =0, ..., xD)T (4.30)

Test label y- of test vector x- € R7 is estimated by maximizing classification function in
Equation 4.30 with respect to label k € G. Note that the pixel is classified by the feature
vector at the pixel as well as feature vectors in neighborhood N,(i) in the test area only.
There is no need to estimate labels of neighbors, whereas the ICM method requires
estimated labels of neighbors and needs an iterative procedure for the classification.
Hence, we claim that spatial boosting provides a very fast classifier.

4.5 Relationships between Contextual Classification Methods

Contextual classifiers discussed in the chapter can be regarded as an extension of
Switzer’s method from a unified viewpoint, cf. [16] and [2].

4.5.1 Divergence Model and Switzer’s Model

Let us consider the divergence model in Gaussian MRFs (GMRFs), where feature vectors
follow homoscedastic Gaussian distributions N, (j(k), ). The divergence model can be
viewed as a natural extension of Switzer’s model.

The image with center pixel 1 and its neighbors is shown in Figure 4.3. First-order
and second-order neighborhoods of the center pixel are given by sets of pixel numbers
N1(1) = {2,4,6,8} and N ﬁ(l) = {2,3,...,9}, respectively. We focus our attention on center
pixel 1 and its neighborhood N,(1) of size 2K in general and discuss the classification
problem of center pixel 1 when labels y; of 2K neighbors are observed.

Let B be a non-negative estimated value of the clustering parameter 8. Then, label y; of
center pixel 1 is estimated by the ICM algorithm. In this case, the estimate is derived by
maximizing conditional probability (Equation 4.26) with p(x | k) = (x| k). This is equiva-
lent to finding label YDiV defined by

You = arg min (i, w®) +5 S Diwy), o)), NOI=26  @a
keG JENA1)

where D;(s, t) is the squared Mahalanobis distance (Equation 4.22).

Switzer’s method [1] classifies the center pixel by minimizing formula given in Equa-
tion 4.25 with respect to label k. Here, the method can be slightly extended by changing
the coefficient for ) ; ¢ N,o D1(xj, m(k)) from 1 to B/K. Thus, we define the estimate due to
Switizer’s method as follows:

54 |3 1 1 1
6 | 1 2 1 1 2
FIGURE 4.3
Pixel numbers (left) and pixel labels (right). 718159 1 212
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Voiver = arg min { Difxt, k) +2 3™ Dy, mo) 4.32)
keG JENL1)

Estimates in Equation 4.31 and Equation 4.32 of label y; are given by the same formula

except for p(y;) and x; in the respective last terms. Note that x; itself is a primitive estimate

of p(y;). Hence, the classification method based on the divergence model is an extension

of Switzer’s method.

4.5.2 Error Rates

We derive the exact error rate due to the divergence model and Switzer’s model in the
previous local region with two classes G = {1, 2}. In the two-class case, the only positive
quasi-distance is D(1,2). Substituting BD(1,2) for B, we note that the MRF based on
Jeffreys divergence is reduced to the Potts model.

Let 6 be the Mahalanobis distance between distributions N, (p(k), %) for k = 1,2, and
N, (1) be a neighborhood consisting of 2K neighbors of center pixel 1, where K is a fixed
natural number. Furthermore, suppose that the number of neighbors with label 1 or 2 is
randomly changing. Our aim is to derive the error rate of pixel 1 given features x;, x;, and
labels y; of neighbors j in N,(1). Recall that Ypiy is the estimated label of y; obtained by
formula in Equation 4.31. Then, the exact error rate, Pr{Ypiy # Y4}, is given by

. o ) .
e(B;B,8):7TO<I>(—6/2)+Z7Tk{(D o/2—kpo/g) | 5/2+k38/g)} (4.33)
k=1

1 + e—kB8"/g 1 + kB8

where ®(x) is the cumulative standard Gaussian distribution function, and B is an
estimate of clustering parameter 8. Here, 7 gives a prior probability such that the
number of neighbors with label 1, Wy, is equal to K+k or K — k in the neighborhood
N,(1) fork = 0,1, ..., K. In Figure 4.3, first-order neighborhood N;(1) is given by {2, 4, 6, 8}
with (Wy, K) = (2,2), and second-order neighborhood N (1) is given by {2,3, ...,9} with
(W1,K) = (3,4); see Ref. [16].

If prior probability m, is equal to one, K pixels in neighborhood N,(1) are labeled 1 and
the remaining K pixels are labeled 2 with probability one. In this case, the majority vote
of the neighbors does not work. Hence, we assume that 7 is less than one. Then, we have
the following properties of the error rate, e(B; B,8); see Ref. [16].

« PL. e(0;8,8) = ®(—5/2), égr;c e(B; B,8) = mo®(—5/2) + kzl o kﬁgz/g

e P2. The function, e(B; 8,8), of B takes a minimum at 3 = 8 (Bayes rule), and the
minimum e(B; 8,6) is a monotonically decreasing function of the Mahalanobis
distance, 8, for any fixed positive clustering parameter .

e P3. The function, e(B;B,?), is a monotonically decreasing function of 8 for any
fixed positive constants 8 and 8.

* P4. We have the inequality: e(B; 8, 8) < ®(—8/2) for any positive f if the inequal-
ity B> 4 log{lgf(pfg%z)} holds.

Note that the value ¢(0;8,6) = ®(—6/2) is simply the error rate due to Fisher’s
linear discriminant function (LDF) with uniform prior probabilities on the labels.

The asymptotic value 7y 7Tk/(1 +ek'352/5’) given in P1 is the error rate due to the
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vote-for-majority rule when the number of neighbors, Wj, is not equal to K. The property,
P2, recommends that we use the true parameter, g, if it is known, and this is quite natural.
P3 means that the classification becomes more efficient when § or 8 becomes large. Note
that 6 is a distance in the feature space and g is a distance in the image. P4 implies that the
use of spatial information always improves the performance of noncontextual discrimination
even if estimate 8 is far from the true value .

The error rate due to Switzer’s method is obtained in the same form as that of Equation

4.33 by replacing & with 8+ = §/1/1 + 4f3%/g<8 appearing in ®(-).

The comparison of these two error rates is illustrated in Figure 4.4 with 4 = 2K
neighbors. The error rates due to rules in Equation 4.5 and Equation 4.6 vs.
the estimated clustering parameter 3 are shown for cases (a) 8§ = 1.5 and B = 0.5 and
(b) 6 = 1.5 and B = 1. The prior probability of random variable W, is defined by a
binomial distribution with Pr{Wy =2 +k} = (7)/4 for k=0, 1, 2.

We see that the divergence model is superior to Switzer’s method, and both y-intercepts
are the same value ®(—1.5/2) = 0.2266. Furthermore, the error rate due to the MRF
takes the minimum value at the true value 8 = 0.5 or 1 (recall property P2). The param-
eters yielding Figure 4.4a do not meet the sufficient condition of P4 because

B =05 <0.5455 = log {1;)?7(372/)2 )} /8% as in P3. Actually, the error rate exceeds the 1y-

intercept ®(—6/2) for large B (Figure 4.4a). On the other hand, the parameters of (b)
meet the condition because 8 = 1 and 6 is the same. Hence, the error rate is always less

than ®(—6/2) for any B, and this is shown in Figure 4.4b.

4.5.3 Spatial Boosting and the Smoothing Method

We consider the proposed classification function in Equation 4.30. When the radius is
equal to zero (r = 0), classification function in Equation 4.28 is given by
x=0&, ..., xXDingx 1

Fo(x, k|i) = Bylog p(k|x;) = Bylog p(xi|k)+ C, (4.34)
where p(k | x;) is the posterior probability given in Equation 4.4, and C denotes a constant
independent of label k. Constant S is positive, so the maximization of function Fy(x, k | i)
with respect to label k is equivalent to that of class-specific density p(x;|k). Hence,
classification function F yields the usual noncontextual Bayes classifier.

6=15,8=05 §=15,8=1.0
0.45 010 % 25—
- -
0.4 f| ---- Switzer i 04l ’/,—”
20.35 0035}
o Pt ©
5 03 P 5 03}
Wo.25 ia W5} ya ]
0.2 0.2 \'\_/—
0'150 0.5 1.5 0'150 1 2 3 4
(@ B (b) B
FIGURE 4.4

Error rates due to MRF and Switzer’s method (x-axis: B).
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When the radius is equal to one (r = 1), the classification function in Equation 4.18 is
given by

Fi(x, k|i) = Bylog p(k|xi) + ——— Z log p(k|x;)

|u )I Pt

= By log p(xi | k) + > logp(xj|k)+C’ (4.35)

1
Ry

where C’' denotes a constant independent of k, and set U; (i) is defined by Equation 4.21,
which is the first-order neighborhood of pixel i. Hence, the label of pixel i is estimated by
a convex combination of the log-likelihood of the feature vector x; and that of x; with pixel
j in neighborhood U, (7). In other words, the label is estimated by a majority vote based on
the weighted sum of the log-likelihoods.

Thus, the proposed method is an extension of the smoothing method proposed by
Switzer [1] for multivariate Gaussian distributions with an isotropic correlation function.
However, the derivation is completely different.

4.5.4 Spatial Boosting and MRF-Based Methods

Usually, the MRF-based method uses training data for the estimation of parameters that
specify the class-specific densities p(x | k). Clustering parameter 8 appearing in condi-
tional probability in Equation 4.24 and the test labels are jointly estimated. The ICM
method maximizes conditional probability in Equation 4.26 sequentially with a given
clustering parameter 8. Furthermore, 8 is chosen to maximize pseudo-likelihood in
Equation 4.27 calculated over the test data. This procedure requires a great deal of
CPU time.

On the other hand, spatial boosting uses the training data for the estimation of coeffi-
cients 8, and parameters of densities p(x | k). The estimation cost of the parameters of
the densities is the same as that of the MRF-based classifier. Although estimation of the
coefficients requires iterative procedure (Equation 4.12), the number of iterations is very
low. After estimation of the coefficients and the parameters, the test labels can be
estimated without any iterative procedure.

Thus, the required computational resources, such as CPU times, should be signifi-
cantly different between the two methods, which needs further scrutiny. Although the
training data and the test data are numerous, spatial AdaBoost classifies the test data
very quickly.

4.6 Spatial Parallel Boost by Meta-Learning

Spatial boosting is extended for classification of spatio-temporal data. Su (ppose we have
S sets of training data over regions D € D fors = 1,2, ...,S. Let {(x*, y,) € RT x G | i €
D®) be a set of training data with n® = | D® | samples. Parameters spec1fy1ng the class-
specific densities are estimated by each training data set. Then, we estimate the posterior
distribution in Equation 4.4 according to each training data set. Thus, we derive the
averaged log posteriors (Equation 4.28). We assume that an appropriate calibration for
feature vectors x,*) throughout the training data sets is preprocessed.
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Fix loss function L, and let F) be a set of classification functions of the s-th training data
set. Now, we propose spatial boosting based on S training data sets (Parallel Boost). Let F be
a classification function applicable to all training data sets. Then, we propose an empirical
risk function of F:

S
Remp(F) = Y _RE),(F) (4.36)
s=1

where RSILP(F) denotes empirical risk given in Equation 4.6 or Equation 4.18 due to loss
function L evaluated over the s-th training data set. The following steps describe parallel
boost:

o Let {fo(s), fl(s), el fr(s)} be a set of averages of the log posteriors (Equation 4.28)
evaluated through the s-th training data set fors =1, ...,S.

e Stage for radius 0

(a) Obtain the optimal coefficient and the training data set defined by

(@01, Bor) = arg min Remp(Bf)
(s,B)efl, ..., S} xR

(b) If coefficient By, is negative, quit the procedure. Otherwise, find the minimizer
of empirical risk Remp (Bo1 fo(a‘“) + ,Bfo(s)). Lets = apand B = By, € R be the solution.

(c) If coefficient B, is negative, quit the procedure. Repeat this at most S times and define
the convex combination, Fy = By fo(““) + -+ + Bom, fo(”"’”“), of the classification func-
tions, where 1, denotes the number of replications of the substeps.

e Stage for radius 1 (first-order neighborhood)

(a) Let Fp be a function obtained by the previous stage. Then, find classification
function f € F; and coefficient 8 € R that minimize the empirical risk Remp(Fo +
B fo®), for example, s = a;; and 8 = B1;.

(b) If coefficient Bq; is negative, quit the procedure. Otherwise, minimize the
empirical risk, Remp(Fo+B11 fl(”“) +Bf1 ), given Fy and By fl(““). This is
repeated and we define a convex combination F; = 11 fl(”“) + 4 Big, fl(”l”’l).
The function Fy + F; constitutes a contextual classifier.

« The stage is repeated up to radius r, and we obtain the classification function F, =

Fo+Fi+---+F,.

Note that spatial parallel boost is based on the assumption that training data sets and test
data are not significantly different, especially in the spatial distribution of the classes.

4.7 Numerical Experiments

Various classification methods discussed here will be examined by applying them to three
data sets. Data set 1 is a synthetic data set, and Data sets 2 and 3 are real data sets
offered in Ref. [20] as benchmarks. Legends of the data sets are given in the following
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section; then, the classification methods are applied to the data sets for evaluating the
efficiency of the methods.

4.7.1 Legends of Three Data Sets
4.7.1.1 Data Set 1: Synthetic Data Set

Data set 1 is constituted by multi-spectral images generated over the image shown in
Figure 4.5a. There are three classes (§ = 3), and the labels correspond to black, white, and
gray. Sample sizes from these classes are 3330, 1371, and 3580 (n = 8281), respectively.
We simulate four-dimensional spectral images (g = 4) at each pixel of the true image
of Figure 4.4a following independent multi-variate Gaussian distributions with mean
vectors uq = (00 0 0)7, my =110 O)T/\/E, and s = (1.0498—0.6379 0 0)" and with com-
mon variance—covariance matrix o”I, where I denotes the identity matrix. The
mean vectors were chosen to maximize pseudo-likelihood (Equation 4.27) of the training
data based on the squared Mahalanobis distance used as the divergence in Equation 4.22.
Test data of size 8281 are similarly generated over the same image. Gaussian density
functions with the common variance-covariance matrix are used to derive the posterior
probabilities.

4.7.1.2 Data Set 2: Benchmark Data Set grss_dfc_0006

Data set grss_dfc_0006 is a benchmark data set for supervised image classification. The
data set can be accessed from the IEEE GRS-S Data Fusion reference database [20], which
consists of samples acquired by ATM and SAR (six and nine bands, respectively; g = 15)
observed at Feltwell, UK. There are five agricultural classes of sugar beets, stubble, bare
soil, potatoes, and carrots (g = 5). Sample sizes of the training data and test data are
5072 = 1436+ 1070 + 341 + 1411 + 814 and 5760 = 2017 + 1355 + 548 + 877 4 963, respect-
ively, in a rectangular region of size 350 x 250. The data set was analyzed in Ref. [21]
through various methods based on statistics and neural networks. In this case, the labels
of the test and training data are observed sparsely.

4.7.1.3 Data Set 3: Benchmark Data Set grss_dfc_0009

Data set grss_dfc_0009 is also taken from the IEEE GRS-S Data Fusion reference database,
which consists of examples acquired by Landsat 7 TM+ (g = 7) with 11 agricultural
classes (¢ = 11) in Flevoland, Netherlands. Training data and test data sizes are 2891
and 2890, respectively, in a square region of size 512 x 512. We note that the labels of the
test and training data of Data sets 2 and 3 are observed sparsely in the region.

4.7.2 Potts Models and the Divergence Models

We compare the performance of the Potts and the divergence models applied
to Data sets 1 and 2 (see Table 4.1 and Table 4.2). Gaussian distributions with
a common variance—covariance matrix (homoscedastic), and Gaussian distributions
with class-specific matrices (heteroscedastic) are employed for class-specific distributions.
The former corresponds to the LDF and the latter to the quadratic discriminant function
(QDF). Test errors due to GMRF-based classifiers with several radii r are listed in the
tables. Numerals in boldface denote the optimal values in the respective columns. We see
that the divergence models give the minimum values in Table 4.1 and Table 4.2.
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(a) True labels

FIGURE 4.5
(a) True labels of data set 1, (b) labels estimated by LDF, (c)—(f) labels estimated by spatial AdaBoost with B¢ f, +
Bifi + -+ Brfr

In the homoscedastic cases of Table 4.1 and Table 4.2, the divergence model gives a
performance similar to that of the Potts model. In the heteroscedastic case, the divergence
model is superior to the Potts model to a small degree. Classified images with 0* = 1 are
given in Figure 4.5b through Figure 4.5f. Figure 4.5b is an image classified by the LDF,
which exhibits very poor performance. As radius r becomes larger, images classified by

TABLE 4.1

Test Error Rates (%) Due to Gaussian MRFs with Variance-Covariance Matrices oI with ¢® = 1,2
for Data Set 1

Homoscedastic Gaussian MRFs

o =1 o’ =2 o® =3 o =1
Radius r* Potts Jeffreys Potts Jeffreys Potts Jeffreys Potts Jeffreys
0 41.66 41.66 41.57 41.57 52.63 52.63 54.45 54.45
1 9.35 9.25 9.97 9.68 25.60 27.41 30.76 31.07
2 3.90 3.61 3.90 4.46 13.26 12.23 17.49 15.58
4 347 2.48 3.02 3.12 9.82 9.20 11.83 14.70
5 3.19 2.72 3.32 2.96 8.03 7.75 10.72 9.12
8 3.39 3.06 3.35 3.37 7.76 8.57 10.14 10.61
9 3.65 3.30 3.51 4.06 8.28 8.20 10.58 11.00
10 3.89 3.79 3.86 4.09 8.88 10.08 10.57 12.66
13 4.46 4.13 4.36 4.66 10.12 10.20 13.25 14.06
16 449 417 5.00 4.99 11.16 11.68 14.25 14.95
17 4.96 4.67 5.30 5.54 12.04 11.65 15.34 15.76
18 5.00 4.94 5.92 5.83 12.64 12.67 16.07 15.89

20 5.68 6.11 6.50 6.56 14.89 13.55 17.18 17.00
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TABLE 4.2

Test Error Rates (%) Due to Homoscedastic and Heteroscedastic Gaussian MRFs with Two Sorts of
Divergences for Data Set 2

Gaussian MRFs

Homoscedastic Heteroscedastic

Radius r* Potts Jeffreys Potts Jeffreys

0 8.61 8.61 14.67 14.67

4 6.44 6.09 12.93 11.44

9 6.16 5.69 13.09 10.19
16 5.99 5.35 13.28 9.67
25 6.16 5.69 12.80 9.39
36 6.49 5.64 13.16 9.55
49 6.37 6.18 12.90 9.90
64 6.30 6.65 12.92 9.76

spatial AdaBoost becomes clearer. Therefore, we see that spatial AdaBoost improves the
noncontextual classification result (r = 0) significantly.

4.7.3 Spatial AdaBoost and Its Robustness

Spatial AdaBoost is applied to the three data sets. The error rates due to spatial AdaBoost
and the MRF-based classifier for Data set 1 are listed in Table 4.3. Here, homoscedastic
Gaussian distributions are employed for class-specific distributions in both classifiers.
Hence, classification with radius » = 0 indicates noncontextual classification by the LDF.
We used the GMRF with the divergence model discussed in Section 4.4.3.

From Table 4.3, we see that the minimum error rate due to AdaBoost is higher than that
due to the GMRF-based method, but the value is still comparable to that due to the

TABLE 4.3

Error Rates (%) Due to Homoscedastic GMRF and Spatial AdaBoost for Data Set 1 with Variance—
Covariance Matrix ¢°I

o? =1 o? =4
Radius r* GMRF AdaBoost GMRF AdaBoost
0 41.66 41.65 54.45 54.45
1 9.25 20.40 31.07 40.88
2 3.61 12.15 15.58 33.79
4 2.48 8.77 14.70 28.78
5 2.72 5.72 9.12 22.71
8 3.06 5.39 10.61 20.50
9 3.30 4.82 11.00 18.96
10 3.79 4.38 12.66 16.58
13 4.13 4.34 14.06 14.99
16 417 431 14.95 14.14
17 4.67 4.19 15.76 13.02
18 4.94 4.34 15.89 12.57

20 6.11 443 17.00 12.16
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(a) Data set 1 (b) Data set 2
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FIGURE 4.6
Estimated coefficients for the log posteriors in the ring regions of data set 1 (left) and data set 2 (right).

GMRF-based method. The left figure in Figure 4.6 is a plot of the estimated coefficients for
the averaged log posterior f, vs. 1. All the coefficients are positive. Therefore, the problem
of stopping to combine classification function arises. Training and test errors as radius r
becomes large are given in Figure 4.7. The test error takes the minimum value at 7* = 17,
whereas the training error is stable for large r.

The same study as the above is applied to Data set 2 (Table 4.4). We obtain a similar
result as that observed in Table 4.3. The left figure in Figure 4.6 gives the estimated
coefficient. We see that coefficient 8, with r =+/72 is — 0.012975, a negative value.
This implies that averaged log posterior f, with r = /72 is not appropriate for the
classification. Therefore, we must exclude functions of radius /72 or larger.

The application to Data set 3 leads to a quite different result (Table 4.5). We fit
homoscedastic and heteroscedastic Gaussian distributions for feature vectors. Hence,
classification with radius » = 0 is performed by the LDF and the QDEF. The error rates
due to noncontextual classification function log p(k | x) and the coefficients are tabulated
in Table 4.5. The test error due to the QDF is 1.66%, and this is excellent. Unfortunately,
coefficients B, of functions log p(k | x) in both cases are estimated by the negative values.

(a) Training data (b) Test data
0.4} 1
<
o 0.3 1 ]
5 2
g) (0]
€ °%f 1 8
© [
|—
0.1 E
0 0
0 10 20 30 40 50 0 10 20 30 40 50
Squared radii of neighborhoods Squared radii of neighborhoods
FIGURE 4.7

Error rates with respect to squared radius, 7%, for training data (left) and test data (right) due to classifiers Bofy +
Bifi + -+ + B, for data set 1.



Supervised Image Classification of Multi-Spectral Images 99

TABLE 4.4
Error Rates (%) Due to GMRF and Spatial AdaBoost for Data Set 2
Homoscedastic

Radius 7 GMRF AdaBoost
0 8.61 8.61
4 6.09 7.08
9 5.69 6.11
16 5.35 5.95

25 5.69 5.83

36 5.69 5.85

49 6.13 5.99

64 6.65 6.01

Therefore, the classification functions ¢ log p(k | x) are not applicable. This implies that
the exponential loss defined by Equation 4.5 is too sensitive to misclassified data.

Error rates for spatial AdaBoost Bqfy+ B1f1 are listed in Table 4.6 when coefficient B is
predetermined and B, is tuned by the empirical risk Remp(Bofo + B1f1)- The LDF and the
QDF columns correspond to the posterior probabilities based on the homoscedastic
Gaussian distributions and the heteroscedastic Gaussian distributions, respectively. For
both of these cases, information in the first-order neighborhood (r = 1) improves the
classification slightly. We note that homoscedastic and heteroscedastic GMRFs have
minimum error rates of 4.01% and 0.52%, respectively.

4.7.4 Spatial AdaBoost and Spatial LogitBoost

We apply classification functions Fo, Fy, ..., F, with r= V20 to the test data, where
function F, is defined by Equation 4.30, and coefficients Bo, 31, ..., B, with r = V20 are
sequentially tuned by minimizing exponential risk (Equation 4.6) or logit risk (Equation
4.18). Error rates due to GMRF-based classifiers and spatial boosting methods for error
variances 0”= 1 and 4 for Data set 1 are compared in Table 4.7.

We see that GMRF is superior to the spatial boosting methods to a small degree.
Furthermore, spatial AdaBoost and spatial LogitBoost exhibit similar performances for
Data set 1. Note that spatial boosting is very fast compared with GMRF-based classifiers.
This observation is also true for Data set 2 (Table 4.8). Then, GMRF and spatial LogitBoost
were applied to Data set 3 (Table 4.9). Spatial LogitBoost still works well in spite of the
failure of spatial AdaBoost. Note that spatial AdaBoost and spatial LogitBoost use the
same classification functions: fy, f1, ..., - However, the loss function used by LogitBoost

TABLE 4.5

Optimal Coefficients Tuned by Minimizing Exponential Risks
Based on LDF and QDF for Data Set 3

LDF QDF
Error rate by fy 10.69 % 1.66 %
Tuned B, to fy —0.006805 —0.000953

Error rate by Bofo Nearly 100% Nearly 100%
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TABLE 4.6

Error Rates (%) Due to Contextual Classification Function Bqfy + B1f1 Given By for Data Set 3. 8, Is
Tuned by Minimizing the Empirical Exponential Risk

Bo Homoscedastic Heteroscedastic
1077 9.97 1.35
10°° 10.00 1.35
107° 10.00 1.35
107 10.00 1.25
1073 9.10 1.00
1072 9.45 1.38
1071 10.24 1.66

1 10.69 1.66
0 10.69 1.66
TABLE 4.7

Error Rates (%) Due to GMRF and Spatial Boosting for Data Set 1 with Variance-Covariance
Matrix oI

o =1 o =4
Spatial Boosting Spatial Boosting
Homoscedastic Homoscedastic
Radius 7 GMRF AdaBoost  LogitBoost GMRF AdaBoost  LogitBoost
0 41.66 41.66 41.66 54.45 54.45 54.45
1 9.25 20.40 19.45 31.07 40.88 40.77
2 3.61 12.15 11.63 15.58 33.79 33.95
4 248 8.77 8.36 14.70 28.78 28.74
5 272 5.72 593 9.12 22.71 22.44
8 3.06 5.39 5.43 10.61 20.50 20.55
9 3.30 4.82 4.96 11.00 18.96 19.01
10 3.79 4.38 4.65 12.66 16.58 16.56
13 4.13 4.34 4.54 14.06 14.99 15.08
16 4.17 4.31 443 14.95 14.14 14.12
17 4.67 4.19 4.31 15.76 13.02 13.22
18 494 4.34 4.58 15.89 12.57 12.69
20 6.11 443 4.66 17.00 12.16 12.11

TABLE 4.8
Error Rates (%) Due to GMRF and Spatial Boosting for Data Set 2
Homoscedastic
Radius 7* Homoscedastic GMRF AdaBoost LogitBoost
0 8.61 8.61 8.61
4 6.09 7.08 7.93
9 5.69 6.11 7.33
16 5.35 5.95 6.74
25 5.69 5.83 6.35
36 5.69 5.85 6.13
49 6.13 5.99 6.32

64 6.65 6.01 6.48
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TABLE 4.9
Error Rates (%) Due to GMRF and Spatial LogitBoost for Data Set 3
Homoscedastic Heteroscedastic
Radius 7 GMRF LogitBoost GMRF LogitBoost
0 10.69 10.69 1.66 1.66
1 8.58 9.48 1.97 1.31
4 7.06 6.51 1.69 0.93
8 3.81 543 0.55 0.76
9 4.01 5.40 0.52 0.76
10 4.08 529 0.52 0.83
13 4.01 5.16 0.52 0.87
16 4.01 5.26 0.52 0.90

assigns less penalty to misclassified data. Hence, spatial LogitBoost seems to have a
robust property.

4.7.5 Spatial Parallel Boost

We examine parallel boost by applying it to Data set 1. Three rectangular regions found
in Figure 4.8a give training areas. Now, we consider the following four subsets of the
training data set:

» Near the center of Figure 4.8a with sample size 75 (D)
» North-west of Figure 4.8a with sample size 160 (D)

(a) True labels (b) DV UDPRUD® r=0 (c) DO, r=v13

b P

(d) D@, r=13

FIGURE 4.8

True labels, training regions, and classified images. The # denotes the size of training samples. (a) True labels
with three training regions. (b) Parallel boost with * = 0 (error rate = 42.29%, n = 435) noncontextual
classification. (c) Spatial boost by D® with r = /13 (error rate = 10.26%, n = 75). (d) Spatial boost by D®@
with r = /13 (error rate = 6.29%, n = 160). (e) Spatial boost by D® with r = V13 (error rate = 7.46%, n = 200).
(f) Parallel boost by DM U D® U D® with r = V13 (error rate = 4.96%, n = 435).
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TABLE 4.10

Error Rates (%) Due to Spatial AdaBoost Based on Four Training Data Sets and Spatial Parallel Boost
Based on Union of Three Subsets in Data Set 1

Spatial AdaBoost Parallel Boost

Radius 7 D® D®? D® Whole D®U D®U D®
0 43.13 41.67 45.88 41.75 42.29
1 23.84 20.23 26.51 20.40 21.18
2 17.16 12.84 18.92 12.15 13.03
4 13.88 9.44 15.25 8.77 9.46
5 10.88 7.34 11.21 5.72 6.39
8 10.49 6.97 10.26 5.39 5.78
9 10.48 6.64 9.26 4.82 5.41
10 10.41 6.35 8.08 4.38 5.19
13 10.26 6.29 7.46 4.34 4.96

« South-east of Figure 4.8a with sample size 200 (D)
o All training data with sample size 8281

The test data set is also of sample size 8281. The training region D™ is relatively small,
so we only consider radius r up to v/13. Gaussian density functions with a common
variance—covariance matrix are fitted to each training data set, and we obtain four types
of posterior probabilities for each pixel in training data sets and the test data set.
Spatial AdaBoost derived by the four training data sets and spatial parallel boost derived
by the region DV’ U D® U D® are applied to the test region shown in Figure 4.2a.

Error rates due to five classifiers examined with the test data using 8281 samples are
compared in Table 4.10. Each row corresponds to spatial boost based on radius r in
{0,1, ..., V13}. The second to fourth columns correspond to Spatial AdaBoost based on
the four training data sets. The last column is the error rate due to spatial parallel boost.
We see that spatial AdaBoost exhibits a better performance as the training data size
increases. The classifier based on D® seems exceptional, but it gives better results for
a large r. Spatial parallel boost exhibits a performance similar to that of spatial
AdaBoost based on all the training data. Here, we note again that our method uses only
435 samples, whereas all the training data have 8281 samples.

A noncontextual classification result based on spatial parallel boost is given in Figure
4.8b, and it is very poor. An excellent classification result is obtained as radius r becomes
bigger. The result with » = /13, which is better than the results (b), (d), and (f) due to
spatial AdaBoost using three training data sets, is given in Figure 4.8e. The error rates
corresponding to figures (b), (d), (e), and (f) are given in Table 4.10 in bold.

4.8 Conclusion

We have considered contextual classifiers, Switzer’s smoothing method, MRF-based
methods, and spatial boosting methods. We showed that the last two methods can be
regarded as extensions of the Switzer’s method. The MRF-based method is known to be
efficient, and it exhibited the best performance in our numerical studies given here.
However, the method requires extra computation time for (1) the estimation of parameters
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specifying the MRF and (2) the estimation of test labels, even if the ICM procedure is
utilized for (2). Both estimations are accomplished by iterative procedures. The method has
already been fully discussed in the literature. The following are our remarks on spatial
boosting and its possible future development.

Spatial boosting is derived as long as posterior probabilities are available. Hence,
posteriors need not be defined by statistical models. Posteriors due to statistical support
vector machines (SVM) [22,23] could be utilized. Spatial boosting is derived by fewer
assumptions than those of an MRF-based method. Features of spatial boosting are as
follows:

(a) Various types of posteriors can be implemented.

Pairwise coupling [24] is a popular strategy for multi-class classification that
involves estimating posteriors for each pair of classes, and then coupling the
estimates together.

(b) Directed neighborhoods can be implemented.

See Figure 4.9 for the directed neighborhoods. They would be suitable for
classification of textured images.

(c) The method is applicable to a situation with multi-source and multi-temporal
data sets.

(d) Classification is performed non-iteratively, and the performance is similar to
that of MRF-based classifiers.

The following new questions arise:

* How do we define the posteriors? This is closely related to feature (a).
e How do we choose the loss function?

* How do we determine the maximum radius for regarding log posteriors into
the classification function.

This is an old question in boosting: How many classification functions are sufficient for
classification?

Spatial boosting should be used in cases where estimation of coefficients is performed
through test data only. This is a first step for possible development into unsupervised
classification. In addition, the method will be useful for unmixing. Originally, classifica-
tion function F defined by Equation 4.30 is given by a convex combination of averaged

(@) r=1 (b) r=1 (©) r="2 (d) r=v2

—",.‘j

FIGURE 4.9
Directed subsets with center pixel i.
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log posteriors. Therefore, F would be useful for estimation of posterior probabilities,
which is directly applicable to unmixing.
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5.1 Introduction

The recent natural disasters (e.g., tsunami, hurricanes, eruptions, earthquakes, etc.) and
the increasing amount of anthropogenic changes (e.g., due to wars, pollution, etc.) gave
prominence to the topics related to environment monitoring and damage assessment. The
study of environmental variations due to the time evolution of the above phenomena is of
fundamental interest from a political point of view. In this context, the development of
effective change-detection techniques capable of automatically identifying land-cover

107
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variations occurring on the ground by analyzing multi-temporal remote-sensing images
assumes an important relevance for both the scientific community and the end-users.
The change-detection process considers images acquired at different times over the same
geographical area of interest. These images acquired from repeat-pass satellite sensors are
an effective input for addressing change-detection problems. Several different Earth-
observation satellite missions are currently operative, with different kinds of sensors
mounted on board (e.g.,, MODIS and ASTER on board NASA’s TERRA satellite, MERIS
and ASAR on board ESA’s ENVISAT satellite, Hyperion on board EO-1 NASA’s satellite,
SAR sensors on board RADARSAT-1 and RADARSAT-2 CSA’s satellites, Ikonos and Quick-
bird satellites that acquire very high resolution pancromatic and multi-spectral (MS) images,
etc.). Each sensor has specific properties with respect to the image acquisition mode (e.g.,
passive or active), geometrical, spectral, and radiometric resolutions, etc. In the development
of automatic change-detection techniques, it is mandatory to take into account the proper-
ties of the sensors to properly extract information from the considered data.

Let us discuss the main characteristics of different kinds of sensors in detail (Table 5.1
summarizes some advantages and disadvantages of different sensors for change-detection
applications according to their characteristics).

Images acquired from passive sensors are obtained by measuring the land-cover
reflectance on the basis of the energy emitted from the sun and reflected from the
ground'. Usually, the measured signal can be modeled as the desired reflectance (meas-
ured as a radiance) altered from an additive Gaussian noise. This noise model enables
relatively easy processing of the signal when designing data analysis techniques. Passive
sensors can acquire two different kinds of images [panchromatic (PAN) images and MS
images] by defining different trade-offs between geometrical and spectral resolutions
according to the radiometric resolution of the adopted detectors. PAN images are char-
acterized by poor spectral resolution but very high geometrical resolution, whereas MS
images have medium geometrical resolution but high spectral resolution. From the
perspective of change detection, PAN images should be used when the expected size of
the changed area is too small for adopting MS data. For example, in the case of the
analysis of changes in urban areas, where detailed urban studies should be carried out,
change detection in PAN images requires the definition of techniques capable of captur-
ing the richness of information present both in the spatial-context relations between
neighboring pixels and in the geometrical shapes of objects. MS data should be used

TABLE 5.1

Advantages and Disadvantages of Different Kinds of Sensors for Change-Detection Applications

Sensor Advantages Disadvantages

Multispectral (passive) v Characterization of the spectral v Atmospheric conditions strongly affect the

signature of land-covers acquisition phase
v The noise has an additive model
Panchromatic (passive) v High geometrical resolution v Atmospheric conditions strongly affect the
acquisition phase
v High content of spatial-context v Poor characterization of the spectral
information signature of land-covers
SAR (active) v Not affected by sunlight and v Complexity of data preprocessing
atmospheric conditions v Presence of multiplicative speckle noise

! Also, the emission of Earth affects the measurements in the infrared portion of the spectrum.
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when a medium geometrical resolution (i.e., 10-30 m) is sufficient for characterizing the
size of the changed areas and a detailed modeling of the spectral signature of the land-
covers is necessary for identifying the change investigated. Change-detection methods
in MS images should be able to properly exploit the available MS information in the
change detection process. A critical problem related to the use of passive sensors in change
detection consists in the sensitivity of the image-acquisition phase to atmospheric condi-
tions. This problem has two possible effects: (1) atmospheric conditions may not be
conducive to measure land-cover spectral signatures, which depends on the presence of
clouds; and (2) variations in illumination and atmospheric conditions at different acqui-
sition times may be a potential source of errors, which should be taken into account to
avoid the identification of false changes (or the missed detection of true changes).

The working principle of active synthetic aperture radar (SAR) sensors is completely
different from that of the passive ones and allows overcoming some of the drawbacks that
affect optical images. The signal measured by active sensors is the Earth backscattering of
an electromagnetic pulse emitted from the sensor itself. SAR instruments acquire different
kinds of signals that result in different images: medium or high-resolution images, single-
frequency or multi-frequency, and single-polarimetric or fully polarimetric images. As for
optical data, the proper geometrical resolution should be chosen according to the size of
the expected investigated changes. The SAR signal has different geometrical resolutions
and a different penetration capability depending on the signal wavelength, which is
usually included between band X and band P (i.e., between 2 and 100 cm). In other
words, shorter wavelengths should be used for measuring vegetation changes and
longer and more penetrating wavelengths for studying changes that have occurred on or
under the terrain. All the wavelengths adopted for SAR sensors neither suffer from
atmospheric and sunlight conditions nor from the presence of clouds; thus multi-temporal
radar backscattering does not change with atmospheric conditions. The main problem
related to the use of active sensors is the coherent nature of the SAR signal, which results
in a multiplicative speckle noise that makes acquired data intrinsically complex to be
analyzed. A proper handling of speckle requires both an intensive preprocessing phase
and the development of effective data analysis techniques.

The different properties and statistical behaviors of signals acquired by active and
passive sensors require the definition of different change-detection techniques capable
of properly exploiting the specific data peculiarities.

In the literature, many different techniques for change detection in images acquired by
passive sensors have been presented [1-8], and many applications of these techniques
have been reported. This is because of both the amount of information present in MS
images and the relative simplicity of data analysis, which results from the additive noise
model adopted for MS data (the radiance of natural classes can be approximated with a
Gaussian distribution). Less attention has been devoted to change detection in SAR
images. This is explained by the intrinsic complexity of SAR data, which require both
an intensive preprocessing phase and the development of effective data analysis tech-
niques capable of dealing with multiplicative speckle noise. Nonetheless, in the past few
years the remote-sensing community has shown more interest in the use of SAR images in
change-detection problems, due to their independence from atmospheric conditions that
results in excellent operational properties. The recent technological developments in
sensors and satellites have resulted in the design of more sophisticated systems with
increased geometrical resolution. Apart from the active or passive nature of the sensor,
the very high geometrical resolution images acquired by these systems (e.g., PAN images)
require the development of specific techniques capable of taking advantage of the rich-
ness of the geometrical information they contain. In particular, both the high correlation
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between neighboring pixels and the object shapes should be considered in the design of
data analysis procedures.

In the above-mentioned context, two main challenging issues of particular interest in
the development of automatic change-detection techniques are: (1) the definition of
advanced and effective techniques for change detection in SAR images, and (2) the
development of proper methods for the detection of changes in very high geometrical
resolution images. A solution for these issues lies in the definition of multi-scale and
multi-resolution change-detection techniques, which can properly analyze the different
components of the change signal at their optimal scale®. On the one hand, the multi-scale
analysis allows one to better handle the noise present in medium-resolution SAR images,
resulting in the possibility of obtaining accurate change-detection maps characterized by
a high spatial fidelity. On the other hand, multi-scale approaches are intrinsically suitable
to exploit the information present in very high geometrical resolution images according
to effective modeling (at different resolution levels) of the different objects present at
the scene.

According to the analysis mentioned above, after a brief survey on change detection and
on unsupervised change detection in SAR images, we present, in this chapter, a
novel adaptive multi-scale change detection technique for multi-temporal SAR images.
This technique exploits a proper scale-driven analysis to obtain a high sensitivity to
geometrical features (i.e., details and borders of changed areas are well preserved) and a
high robustness to noisy speckle components in homogeneous areas. Although explicitly
developed and tested for change detection in medium-resolution SAR images, this tech-
nique can be easily extended to the analysis of very high geometrical resolution images.

The chapter is organized into five sections. Section 5.2 defines the change-detection
problem in multi-temporal remote-sensing images and focuses attention on unsupervised
techniques for multi-temporal SAR images. Section 5.3 presents a multi-scale approach to
change detection in multi-temporal SAR images recently developed by the authors.
Section 5.4 gives an example of the application of the proposed multi-scale technique to
a real multi-temporal SAR data set and compares the effectiveness of the presented
method with those of standard single-scale change-detection techniques. Finally, in
Section 5.5, results are discussed and conclusions are drawn.

5.2 Change Detection in Multi-Temporal Remote-Sensing Images:
Literature Survey

5.2.1 General Overview

A very important preliminary step in the development of a change-detection system,
based on automatic or semi-automatic procedures, consists in the design of a proper
phase of data collection. The phase of data collection aims at defining: (1) the kind of
satellite to be used (on the basis of the repetition time and on the characteristics of the
sensors mounted on-board), (2) the kind of sensor to be considered (on the basis of
the desired properties of the images and of the system), (3) the end-user requirements
(which are of basic importance for the development of a proper change-detection

It is worth noting that these kinds of approaches have been successfully exploited in image classification
problems [9-12].



Unsupervised Change Detection in Multi-Temporal SAR Images 111

technique), and (4) the kinds of available ancillary data (all the available information that
can be used for constraining the change-detection procedure).

The outputs of the data-collection phase should be used for defining the automatic
change-detection technique. In the literature, many different techniques have been pro-
posed. We can distinguish between two main categories: supervised and unsupervised
methods [9,13].

When performing supervised change detection, in addition to the multi-temporal
images, multi-temporal ground-truth information is also needed. This information is
used for identifying, for each possible land-cover class, spectral signature samples for
performing supervised data classification and also for explicitly identifying what kinds of
land-cover transitions have taken place. Three main general approaches to supervised
change detection can be found in the literature: postclassification comparison, supervised
direct multi-data classification [13], and compound classification [14-16]. Postclassification
comparison computes the change-detection map by comparing the classification maps
obtained by classifying independently two multi-temporal remote-sensing images. On the
one hand, this procedure avoids data normalization aimed at reducing atmospheric
conditions, sensor differences, etc. between the two acquisitions; on the other hand, it
critically depends on the accuracies of the classification maps computed at the two
acquisition dates. As postclassification comparison does not take into account the
dependence existing between two images of the same area acquired at two different times,
the global accuracy is close to the product of the accuracies yielded at the two times [13].
Supervised direct multi-data classification [13] performs change detection by considering
each possible transition (according to the available a priori information) as a class and by
training a classifier to recognize the transitions. Although this method exploits the
temporal correlation between images in the classification process, its major drawback
is that training pixels should be related to the same points on the ground at the two times
and should accurately represent the proportions of all the transitions in the whole images.
Compound classification overcomes the drawbacks of supervised multi-date classifica-
tion technique by removing the constraint that training pixels should be related to the
same area on the ground [14-16]. In general, the approach based on supervised classifi-
cation is more accurate and detailed than the unsupervised one; nevertheless, the latter
approach is often preferred in real-data applications. This is due to the difficulties in
collecting proper ground-truth information (necessary for supervised techniques), which
is a complex, time consuming, and expensive process (in many cases this process is not
consistent with the application constraints).

Unsupervised change-detection techniques are based on the comparison of the spectral
reflectances of multi-temporal raw images and a subsequent analysis of the comparison
output. In the literature, the most widely used unsupervised change-detection techniques
are based on a three-step procedure [13,17]: (1) preprocessing, (2) pixel-by-pixel compari-
son of two raw images, and (3) image analysis and thresholding (Figure 5.1).

The aim of the preprocessing step is to make the two considered images as comparable as
possible. In general, preprocessing operations include: co-registration, radiometric and
geometric corrections, and noise reduction. From the practical point of view, co-registration
is a fundamental step as it allows obtaining a pair of images where corresponding pixels
are associated to the same position on the ground®. Radiometric corrections reduce
differences between the two acquisitions due to sunlight and atmospheric conditions.
These procedures are applied to optical images, but they are not necessary for SAR

°It is worth noting that usually it is not possible to obtain a perfect alignment between temporal images. This may
considerably affect the change-detection process [18]. Consequently, if the amount of residual misregistration
noise is significant, proper techniques aimed at reducing its effects should be used for change detection [1,4].
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SAR Image SAR Image
(date t,) (date t,)
Preprocessing Preprocessing
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v

Analysis of the
log-ratio image

FIGURE 5.1 l
Block scheme of a standard unsupervised change- Change-detection
detection approach. map (M)

images (as SAR data are not affected by atmospheric conditions). Also noise reduction is
performed differently according to the kind of remote-sensing images considered. In
optical images common low-pass filters can be used, whereas in SAR images proper
despeckling filters should be applied.

The comparison step aims at producing a further image where differences between the
two acquisitions considered are highlighted. Different mathematical operators (see Table
5.2 for a summary) can be adopted for performing image comparison; this choice gives
rise to different kinds of techniques [13,19-23]. One of the most widely used operators is
the difference one. The difference can be applied to: (1) a single spectral band (univariate
image differencing) [13,21-23], (2) multiple spectral bands (change vector analysis) [13,24],
and (3) vegetation indices (vegetation index differencing) [13,19] or other linear (e.g., tasselled
cap transformation [22]) or nonlinear combinations of spectral bands. Another widely used
operator is the ratio operator (image ratioing) [13], which can be successfully used in SAR
image processing [17,25,26]. A different approach is based on the use of the principal
component analysis (PCA) [13,20,23]. PCA can be applied separately to the feature space
at single times or jointly to both images. In the first case, comparison should be performed
in the transformed feature space before performing change detection; in the second case,
the minor components of the transformed feature space contains change information.

TABLE 5.2

Summary of the Most Widely Used Comparison Operators. (f; is the considered feature at time
that can be: (1) a single spectral band X,l;, (2) a vector of m spectral bands [X}(, .,X", (3) a
vegetation index V, or (4) a vector of features [Pi, ... PP obtained after PCA. Xp and Xg

are the images after comparison with the difference or ratio operators, respectively)

Technique Feature Vector f; at the Time #; Comparison Operator
Univariate image differencing fi=Xx¢ Xo=f-fi
Vegetation index differencing fio = Vi Xo=f—-f
Image rationing fo=Xf Xr = fo/fi
Change vector analysis fe = X X1 Xp = | - Aill

Principal component analysis fe=IP4,..., P} Xp = |2 - Aill
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Performances of the above-mentioned techniques could be degraded by several factors
(like differences in illumination at two dates, differences in atmospheric conditions,
and in sensor calibration) that make a direct comparison between raw images acquired
at different times difficult. These problems related to unsupervised change detection
disappear when dealing with SAR images instead of optical data.

Once image comparison is performed, the decision threshold can be selected either
with a manual trial-and-error procedure (according to the desired trade-off between false
and missed alarms) or with automatic techniques (e.g., by analyzing the statistical distri-
bution of the image obtained after comparison, by fixing the desired false alarm prob-
ability [27,28], or following a Bayesian minimum-error decision rule [17]).

Since the remote-sensing community has devoted more attention to passive sensors [6-8]
rather than active SAR sensors, in the following section we focus our attention on change-
detection techniques for SAR data. Although change-detection techniques based on
different architectures have been proposed for SAR images [29-37], we focus on the
most widely used techniques, which are based on the three-step procedure described
above (see Figure 5.1).

5.2.2 Change Detection in SAR Images

Let us consider two co-registered intensity SAR images, X; = {X1(i,j), 1 <i <[, 1 <j <]}
and X, = {X5(i,)), 1 <i<I,1<j<]}, of sizel -], acquired over the same area at different
times t; and f,. Let ) = {w. w,} be the set of classes associated with changed and
unchanged pixels. Let us assume that no ground-truth information is available for
the design of the change-detection algorithm, i.e., the statistical analysis of change and
no-change classes should be performed only on the basis of the raw data. The change-
detection process aims at generating a change-detection map representing changes on the
ground between the two considered acquisition dates. In other words, one of the possible
labels in ) should be assigned to each pixel (i,j) in the scene.

5.2.2.1 Preprocessing

The first step for properly performing change detection based on direct image comparison
is image preprocessing. This procedure aims at generating two images that are as similar
as possible unless in changed areas. As SAR data are not corrupted by differences in
atmospheric and sunlight conditions, preprocessing usually comprises three steps: (1)
geometric correction, (2) co-registration, and (3) noise reduction. The first procedure aims
at reducing distortions that are strictly related to the active nature of the SAR signal, as
layover, foreshortening, and shadowing due to ground topography. The second step is
very important, as it allows aligning temporal images to ensure that corresponding
pixels in the spatial domain are associated to the same geographical position on the
ground. Co-registration in SAR images is usually carried out by maximizing cross-
correlation between the multi-temporal images [38,39]. The major drawback of this
process is the need for performing interpolation of backscattering values, which is a
time-consuming process. Finally, the last step is aimed at reducing the speckle noise.
Many different techniques have been developed in the literature for reducing the
speckle. One of the most attractive techniques for speckle reduction is multi-looking
[25]. This procedure, which is used for generating images with the same resolution
along the azimuth and range directions, allows reduction of the effect of the coherent
speckle components. However, a further filtering step is usually applied to the images
for making them suitable to the desired analysis. Usually, adaptive despeckling proced-
ures are applied. Among these procedures we mention the following filtering techniques:
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Frost [40], Lee [41], Kuan [42], Gamma Map [43,44], and Gamma WMAP [45] (i.e., the
Gamma MAP filter applied in the wavelet domain). As the description of despeckling
filters is outside the scope of this chapter, we refer the reader to the literature for more
details.

5.2.2.2 Multi-Temporal Image Comparison

As described in Section 5.1, image pixel-by-pixel comparison can be performed by means
of different mathematical operators. In general, the most widely used operators are the
difference and the ratio (or log-ratio). Depending on the selected operator, the image
resulting from the comparison presents different behaviors with respect to the change-
detection problem and to the signal statistics. To analyze this issue, let us consider two
multi-look intensity images. It is possible to show that the measured backscattering of
each image follows a Gamma distribution [25,26], that is,

[LXL-1 LX,
p(X) = Wk—l)' exp (— m—k>, k=1,2 (5.1)

where X is a random variable that represents the value of the pixels in image X; (k = 1,2),
my is the average intensity of a homogeneous region at time t, and L is the equivalent
number of looks (ENL) of the considered image. Let us also assume that the intensity
images X; and X, are statistically independent. This assumption, even if not entirely
realistic, simplifies the analytical derivation of the pixel statistical distribution in the
image after comparison. In the following, we analyze the effects of the use of the
difference and ratio (log-ratio) operators on the statistical distributions of the signal.

5.2.2.2.1 Difference Operator

The difference image Xp is computed subtracting the image acquired before the change
from the image acquired after, i.e.,

Xp=X5 — X1 (5.2)

Under the stated conditions, the distribution of the difference image Xp is given
by [25,26]:

I S A N B IR
PO = T o 1+ mm), x;j!(L—l—j)!. b {L(ml +mz)} 3

where Xp, is a random variable that represents the values of the pixels in Xp. As can be
seen, the difference-image distribution depends on both the relative change between the
intensity values in the two images and also a reference intensity value (i.e., the intensity at
t; or t,). It is possible to show that the distribution variance of Xp increases with the
reference intensity level. From a practical point of view, this leads to a higher change-
detection error for changes that have occurred in high intensity regions of the image than
in low intensity regions. Although in some applications the difference operator was used
with SAR data [46], this behavior is an undesired effect that renders the difference
operator intrinsically not suited to the statistics of SAR images.
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5.2.2.2.2 Ratio Operator

The ratio image X is computed by dividing the image acquired after the change by the
image acquired before (or vice-versa), i.e.,

Xr =X2/Xy (5.4)

It is possible to prove that the distribution of the ratio image Xr can be written as follows
[25,26]:

@L-1)! XLxk!

PO =12 R+ x0®

(5.5)

where Xy is a random variable that represents the values of the pixels in X and Xy is the
true change in the radar cross section. The ratio operator shows two main advantages
over the difference operator. The first one is that the ratio-image distribution depends
only on the relative change Xg = m,/m; in the average intensity between the two dates
and not on a reference intensity level. Thus changes are detected in the same manner both
in high- and low-intensity regions. The second advantage is that the ratioing allows
reduction in common multiplicative error components (which are due to both multiplica-
tive sensor calibration errors and the multiplicative effects of the interaction of the coherent
signal with the terrain geometry [25,47]), as far as these components are the same for
images acquired with the same geometry. It is worth noting that, in the literature, the
ratio image is usually expressed in a logarithmic scale. With this operation the distribu-
tion of the two classes of interest (w. and w,) in the ratio image can be made more
symmetrical and the residual multiplicative speckle noise can be transformed to an
additive noise component [17]. Thus the log-ratio operator is typically preferred when
dealing with SAR images and change detection is performed analyzing the log-ratio
image X r defined as:

Xir =logXr = logi—j =log X, —log X (5.6)

Based on the above considerations, the ratio and log-ratio operators are more used than
the difference one in SAR change-detection applications [17,26,29,47-49]. It is worth
noting that for keeping the changed class on one side of the histogram of the ratio (or
log-ratio) image, a normalized ratio can be computed pixel-by-pixel, i.e.,

X; X
XNRmin{—l —2}

X' X, (5.7)

This operator allows all changed areas (independently of the increasing or decreasing value
of the backscattering coefficient) to play a similar role in the change-detection problem.

5.2.2.3 Analysis of the Ratio and Log-Ratio Image

The most widely used approach to extract change information from the ratio and log-ratio
image is based on histogram thresholding®. In this context, the most difficult task is to

“For simplicity, in the following, we will refer to the log-ratio image.
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properly define the threshold value. Typically, changed pixels are identified as those
pixels that modified their backscattering more than + x dB, where x is a real number
depending on the considered scene. The value of x is fixed according to the kind of change
and the expected magnitude variation to obtain a desired probability of correct detection
P4 (which is the probability to be over the threshold if a change occurred) or false alarm
Ps, (which is the probability to be over the threshold if no change occurred). It has been
shown that the value of x can be analytically defined as a function of the true change in
the radar backscattering Xg and of the ENL L [25,26], once P4 and P, are fixed. This
means that there exists a value of L such that the given constraints on P4 and Py, are
satisfied. The major drawback of this approach is that, as the desired change intensity
decreases and the detection probability increases, a ratio image with an even higher ENL
is required for constraint satisfaction. This is due to the sensitivity of the ratio to the
presence of speckle; thus a complex preprocessing procedure is required for increasing
the ENL. A similar approach is presented in Ref. [46]; it identifies the decision threshold
on the basis of predefined values on the cumulative histogram of the difference image. It
is worth noting that these approaches are not fully automatic and objective from an
application point of view, as they depend on the user’s sensibility in constraint definition
with respect to the considered kind of change.

Recently, extending the work previously carried out for MS passive images [3,5,23,50], a
novel Bayesian framework has been developed for performing automatic unsupervised
change detection in the log-ratio image derived from SAR data. The aim of this frame-
work is to use the well-known Bayes decision theory in unsupervised problems for
deriving decision thresholds that optimize the separation between changed and un-
changed pixels. The main problems to be solved for the application of the Bayes decision
theory consist in the estimation of both the probability density functions p(X;r/w.) and
p(XLr/wy) and the a-priori probabilities P(w.) and P(w,) of the classes w. and w,, respect-
ively [51], without any ground-truth information (i.e., without any training set). The
starting point of such kinds of methodologies is the hypothesis that the statistical distri-
butions of pixels in the log-ratio image can be modeled as a mixture of two densities
associated with the classes of changed and unchanged pixels, i.e.,

p(Xir) = p(X1r/wu)P(wy) + p(XLR/0c)P(w.) (5.8

Under this hypothesis, two different approaches to estimate class statistical parameters
have been proposed in the literature: (1) an implicit approach [17] and (2) an explicit
approach [49]. The first approach derives the decision threshold according to an implicit
and biased parametric estimation of the statistical model parameters, carried out on the
basis of simple cost functions. In this case, the change-detection map is computed in a
one-step procedure. The second approach separates the image analysis in two steps: (1)
estimation of the class statistical parameters and (2) definition of the decision threshold
based on the estimated statistical parameters. Both techniques require the selection of a
proper statistical model for the distributions of the change and no-change classes. In Ref.
[17], it has been shown that the generalized Gaussian distribution is a flexible statistical
model that allows handling the complexity of the log-ratio images better than the more
commonly used Gaussian distribution. Based on this consideration, in Refs. [17] the well-
known Kittler and Illingworth (KI) thresholding technique (which is an implicit estimation
approach) [52-55] was reformulated under the generalized Gaussian assumption for the
statistical distributions of classes. Despite its simplicity, the KI technique produces satis-
factory change-detection results. The alternative approach, proposed in Refs. [56-58], which
is based on a theoretically more precise explicit procedure for the estimation of statistical
parameters of classes, exploits the combined use of the expectation-maximization (EM)
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algorithm and of the Bayesian decision theory for producing the change-detection map. In
Ref. [49], the iterative EM algorithm (reformulated under the hypothesis of generalized
Gaussian data distribution) was successfully applied to the analysis of the log-ratio image.
Once the statistical parameters are computed, pixel-based or context-based decision rules
can be applied. In the former group, we find the Bayes rule for minimum error, the Bayes
rule for minimum cost, the Neyman-Pearson criterion, etc. [3,5,24,59]. In the latter group,
we find the contextual Bayes rule for minimum error formulated in the Markov random
field (MRF) framework [24,60]. In both cases (implicit and explicit parameter estimation),
change-detection accuracy increases as the ENL increases. This means that, depending on
the data and the application, an intensive despeckling phase may be required to achieve
good change-detection accuracies [17]. It is worth noting that Equation 5.8 assumes that
only one kind of change® has occurred in the area under investigation between the two
acquisition dates. However, techniques that can automatically identify the number of
changes and the related threshold values have been recently proposed in the literature
(both in the context of implicit [61] and explicit [60] approaches). We refer the reader to the
literature for greater details on these approaches.

Depending on the kind of preprocessing applied to the multi-temporal images, the
standard thresholding techniques can achieve different trade-offs between the preserva-
tion of detail and accuracy in the representation of homogeneous areas in change-detection
maps. In most of the applications, both properties need to be satisfied; however, they are
contrasting to each other. On the one hand, high accuracy in homogeneous areas usually
requires an intensive despeckling phase; on the other hand, intensive despeckling
degrades the geometrical details in the SAR images. This is due to both the smoothing
effects of the filter and the removal of the informative components of the speckle (which are
related to the coherent properties of the SAR signal).

To address the above limitations of standard methods, in the next section we present an
adaptive scale-driven approach to the analysis of the log-ratio image recently developed
by the authors.

5.3 Advanced Approaches to Change Detection in SAR Images:
A Detail-Preserving Scale-Driven Technique

In this chapter we present a scale-driven approach to unsupervised change detection in
SAR images, which is based on a multi-scale analysis of the log-ratio image. This
approach can be suitably applied to medium- and high-resolution SAR images to produce
change-detection maps characterized by high accuracy both in modeling details present
in the scene (e.g., border of changed areas) and in homogeneous regions. Multi-temporal
SAR images intrinsically contain different areas of changes in the spatial domain that can
be modeled at different spatial resolutions. The identification of these areas with high
accuracy requires the development of proper change-detection techniques capable of
handling information at different scales. The rationale of the presented scale-driven
unsupervised change-detection method is to exploit only high-resolution levels in the
analysis of the expected edge (or detail) pixels and to use low-resolution levels also in
the processing of pixels in homogeneous areas, to improve both preservation of geo-
metrical detail and accuracy in homogeneous areas in the final change-detection map. In

5Or different kinds of changes that can be represented with a single generalized Gaussian distribution.
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the following, we present the proposed multi-scale change-detection technique in the
context of the analysis of multi-temporal SAR images. However, we expect that
the methodology has general validity and can also be applied successfully to change
detection in very high resolution optical and SAR images with small modifications in the
implementation procedures.

The presented scale-driven technique is based on three main steps: (1) multi-scale
decomposition of the log-ratio image, (2) adaptive selection of the reliable scales for
each pixel (i.e., the scales at which the considered pixel can be represented without border
details problems) according to an adaptive analysis of its local statistics, and (3) scale-
driven combination of the selected scales (Figure 5.2). Scale-driven combination can be
performed by following three different strategies: (1) fusion at the decision level by an
“optimal” scale selection, (2) fusion at the decision level of all reliable scales, and (3)
fusion at the feature level of all reliable scales.

The first step of the proposed method aims at building a multi-scale representation of the
change information in the considered test site. The desired scale-dependent representation
can be obtained by applying different decomposition techniques to the data, such as Lapla-
cian-Gaussian pyramid decomposition [62], wavelet transform [63,64], recursively up-
sampled bicubic filter [65], etc. Given the computational cost and the assumption of the
additive noise model required by the above techniques, we chose to apply the multi-
resolution decomposition process to the log-ratio image X;g, instead of decomposing
the two original images X; and X, separately. At the same time this allows a reduction
in the computational cost and satisfies the additive noise model hypothesis. The selection of
the most appropriate multi-resolution technique is related to the statistical behaviors of X g
and will be discussed in the next section. The multi-resolution decomposition step produces
a set of images X5 = (X%, .., X%, ..., X% 1}, where the superscript n (n = 0,1,..,N—1)
indicates the resolution level. As we consider a dyadic decomposition process, the scale
corresponding to each resolution level is given by 2". In our notation, the output at
resolution level 0 corresponds to the original image, i.e., X2 = X;r. For n ranging from 0
to N—1, the obtained images are distinguished by different trade-offs between preservation
of spatial detail and speckle reduction. In particular, images with a low value of n are
strongly affected by speckle, but they are characterized by a large amount of geometrical
details, whereas images identified by a high value of n show significant speckle reduction
and contain degraded geometrical details (high frequencies are smoothed out).

In the second step, local and global statistics are evaluated for each pixel at different
resolution levels. At each level and for each spatial position, by comparing the local and
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FIGURE 5.2
General scheme of the proposed approach.
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global statistical behaviors it is possible to identify adaptively whether the considered
scale is reliable for the analyzed pixel.

The selected scales are used to drive the last step, which consists of the generation of the
change-detection map according to a scale-driven fusion. In this paper, three different
scale-driven combination strategies are proposed and investigated. Two perform fusion
at the decision level, while the third performs it at the feature level. Fusion at the decision
level can either be based on “optimal” scale selection or on the use of all reliable scales;
fusion at the feature level is carried out by analyzing all reliable scales.

5.3.1 Multi-Resolution Decomposition of the Log-Ratio Image

As mentioned in the previous section, our aim is to handle the information at different
scales (resolution levels) to improve both preservation of geometrical detail and accuracy
in homogeneous areas in the final change-detection map. Images included in the set Xyg
are computed by adopting a multi-resolution decomposition process of the log-ratio
image Xig. In the SAR literature [45,66-70], image multi-resolution representation has
been applied extensively to image de-noising. Here, a decomposition based on the two-
dimensional discrete stationary wavelet transform (2D-SWT) has been adopted, as in our
image analysis framework it has a few advantages (as described in the following) over the
standard discrete wavelet transform (DWT) [71]. As the log-ratio operation transforms the
SAR signal multiplicative model into an additive noise model, SWT can be applied to X g
without any additional processing. 2D-SWT applies appropriate level-dependent high-
and low-pass filters with impulse response h"(-) and I"(-), (n=0,1,..., N — 1), respect-
ively, to the considered signal at each resolution level. A one-step wavelet decomposition
is based on both level-dependent high- and low-pass filtering, first along rows and then
along columns to produce four different images at the next scale. After each convolution
step, unlike DWT, SWT avoids down-sampling the filtered signals. Thus, according to the
scheme in Figure 5.3, the image X; is decomposed into four images of the same size as
the original. In particular, decomposition produces: (1) a lower resolution version X{x" of
image X;g, which is called the approximation sub-band, and contains low spatial
frequencies both in the horizontal and the vertical direction at resolution level 1; and (2)
three high-frequency images X{&", X{r*, and Xig ', which correspond to the horizontal,
vertical, and diagonal detail sub-bands at resolution level 1, respectively. Note that,
superscripts LL, LH, HL, and HH specify the order in which high-(H) and low-(L) pass
filters have been applied to obtain the considered sub-band.
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FIGURE 5.3

Block scheme of the stationary wavelet decomposition of the log-ratio image X r.
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Multi-resolution decomposition is obtained by recursively applying the described

procedure to the approximation sub-band X" obtained at each scale 2". Thus, the

outputs at a generic resolution level 7 can be expressed analytically as follows:

D'-1 D"-1
XEE(VH»U (l, ]) — Z Z ln[p]ln[q]ka" (l + P/]+ ‘7)
p=0 =0
i D"-1 D"-1
X[ R0, j) = Z Z Mplh" [qIX R G+ p, j +9)
p=0 4=0
HL 5
XLR(n+1) (Z/ ]) — Z Z hn[p]l"[q]XII:Ili" (l + p1]+ EI)
p=0 =0
HH 5
XLR (n+1)(i/ ]) — Z Z hn[p]h”[q]X}:}“{” (l + P, ] + 11) (5 9)
p=0 q=0 .

where D" is the length of the wavelet filters at resolution level n. At each decomposition
step, the length of the impulse response of both high- and low-pass filters is up-sampled
by a factor 2. Thus, filter coefficients for computing sub-bands at resolution level 141 can
be obtained by applying a dilation operation to the filter coefficients used to compute
level n. In particular, 2"~ ' zeros are inserted between the filter coefficients used to
compute sub-bands at the lower resolution levels [71]. This allows a reduction in the
bandwidth of the filters by a factor two between subsequent resolution levels.

Filter coefficients of the first decomposition step for # = 0 depend on the selected
wavelet family and on the length of the chosen wavelet filter. According to an analysis of
the literature [68,72], we selected the Daubechies wavelet family and set the filter length to
8. The impulse response of Daubechies of order 4 low-pass filter prototype is given by the
following coefficients set: {0.230378, 0.714847, 0.630881, —0.0279838, —0.187035, 0.0308414,
0.0328830, —0.0105974}.

The finite impulse response of the high-pass filter for the decomposition step is
obtained by satisfying the properties of the quadrature mirror filters. This is done by
reversing the order of the low-pass decomposition filter coefficients and by changing the
sign of the even indexed coefficients [73].

To adopt the proposed multi-resolution fusion strategies, one should return to the
original image domain. This is done by applying the two-dimensional inverse stationary
wavelet transform (2D-ISWT) at each computed resolution level independently. For
further detail about the stationary wavelet transform, the reader is referred to Ref. [71].

To obtain the desired image set Xys (Where each image contains information at a
different scale), for each resolution level a one-step inverse stationary wavelet transform
is applied in the reconstruction phase as many times as in the decomposition phase. The
reconstruction process can be performed by applying the 2D-ISWT either to the approxi-
mation and thresholded detail sub-bands at the considered level (this is usually done in
wavelet-based speckle filters [69]) or only to the approximation sub-bands at each reso-
lution level®. Since the change-detection phase considers all the different levels, all the
geometrical detail is in Xyg even when detail coefficients at a particular scale are

°It is worth noting that the approximation sub-band contains low frequencies in both horizontal and vertical
directions. It represents the input image at a coarser scale and contains most informative components, whereas
detail sub-bands contain information related to high frequencies (i.e., both geometrical detail information and
noise components) each in a preferred direction. According to this observation, it is easy to understand how
proper thresholding of detail coefficients allows noise reduction [69].
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neglected (in other words, the details removed at a certain resolution level are recovered
at a higher level without removing them from the decision process). Once all resolution
levels have been brought back to the image domain, the desired multi-scale sequence of
images X{r (n = 0,1,..., N—1) is complete and each element in Xys has the same size as
the original image.

It is important to point out that unlike DWT, SWT avoids decimating. Thus, this multi-
resolution decomposition strategy “fills in the gaps’’ caused by the decimation step in the
standard wavelet transform [71]. In particular, the SWT decomposition preserves trans-
lation invariance and allows avoiding aliasing effects during synthesis without providing
high-frequency components.

5.3.2 Adaptive Scale Identification

Based on the set of multi-scale images X{r (n = 0,1,...,N — 1) obtained, we must identify
reliable scales for each considered spatial position to drive the next fusion stage with this
information. By using this information we can obtain change-detection maps character-
ized by high accuracy in homogeneous and border areas.

Reliable scales are selected according to whether the considered pixel belongs to a
border or a homogeneous area at different scales. It is worth noting that the information at
low-resolution levels is not reliable for pixels belonging to the border area, because at
those scales details and edge information has been removed from the decomposition
process. Thus, a generic scale is reliable for a given pixel, if the pixel at this scale is notin a
border region or if it does not represent a geometrical detail.

To define whether a pixel belongs to a border or a homogeneous area at a given scale #,
we use a multi-scale local coefficient of variation (LCV"), as typically done in adaptive
speckle de-noising algorithms [70,74]. This allows better handling of any residual multi-
plicative noise that may still be present in the scale selection process after ratioing’. As the
coefficient of variation cannot be computed on the multi-scale log-ratio image sequence,
the analysis is applied to the multi-resolution ratio image sequence, which can be easily
obtained from the former by inverting the logarithm operation. Furthermore, it should be
mentioned that by working on the multi-resolution ratio sequence we can design a
homogeneity test capable of identifying border regions (or details) and no-border regions
related to the presence of changes on the ground. This is different from applying the same
test to the original images (which would result in identifying border and no-border
regions with respect to the original scene but not with respect to the change signal).

The LCV" is defined as:

a"(i, )

LCV"(i,j) = —~L
o) W, )

(5.10)

where ¢” (i, j) and u"(i, ) are the local standard deviation and the local mean, respectively,
computed for the spatial position (i,j) at resolution level n (n =0,1,..., N—1), on a
moving window of a user-defined size. Windows that are too small reduce the reliability
of the local statistical parameters, while those that are too large decrease in sensitivity to
identify geometrical details. Thus the selected size should be a trade-off between the
above properties. The normalization operation defined in Equation 5.10 helps in adapting
the standard deviation to the multiplicative speckle model. This coefficient is a measure of

7 An alternative choice could be to use the standard deviation computed on the log-ratio image. However, in this
way we would neglect possible residual effects of the multiplicative noise component.
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the scene heterogeneity [74]: low values correspond to homogeneous areas, while high
values refer to heterogeneous areas (e.g., border areas and point targets). To separate the
homogeneous from the heterogeneous regions, a threshold value must be defined. In a
homogeneous region the degree of homogeneity can be expressed in relation to the global
coefficient of variation (CV") of the considered image at resolution level n, which is
defined as:
(TVI

CV" = o (5.11)
where ¢ and u" are the mean and the standard deviation computed over a homogeneous
region at resolution level n, (n = 0,1, ..., N —1). Homogeneous regions at each scale can
be defined as those regions that satisfy the following condition:

LCV"(i, ) < CV" (5.12)

In detail, a resolution level r (r = 0,1,..., N —1) is said to be reliable for a given pixel if
Equation 5.12 is satisfied for all resolution levels ¢ (t = 0,1, ..., r). Thus, for the pixel (i, ),
the set Xyib of images with a reliable scale is defined as:

Xﬁjs = {XgR/ R XﬁR/ s X]Sfl]?}’ with Sl] S N-1 (513)

where §;; is the level with the lowest resolution (identified by the highest value of 1), such
that the pixel can be represented without any border problems and therefore it satisfies
the definition of a reliable scale shown in Equation 5.12 (note that the value of S;; is pixel-
dependent).

It is worth noting that, if the scene contains different kinds of changes with different
radiometry (e.g., with increasing and decreasing radiometry), the above analysis should
be applied to the normalized ratio image Xnr (Equation 5.7) (rather than to the
standard ratio image Xg). This makes the identification of border areas independent of
the order with which the images are considered in the ratio, thus allowing all changed
areas (independently of the related radiometry) to play a similar role in the definition of
border pixels.

5.3.3 Scale-Driven Fusion

Once the set X3i5has been defined for each spatial position, selected reliable scales are
used to drive the fourth step, which consists of the generation of the change-detection
map according to a scale-driven fusion. In this chapter three different fusion strategies are
reported: two of them perform fusion at the decision level, while the third performs it at
the feature level. Fusion at the decision level can either be based on “optimal” scale selection
(FDL-OSS) or on the use of all reliable scales (i.e., scales included in Xys4 ) (FDL-ARS); fusion
at the feature level is carried out by analyzing all reliable scales (FFL-ARS).

For each pixel, the FDL-OSS strategy only considers the reliable level with the lowest
resolution, that is, the “optimal” resolution level S;;. The rationale of this strategy is that
the reliable level with the lowest resolution presents an “optimal” trade-off between
speckle reduction and detail preservation for the considered pixel. In detail, each scale-
dependent image in the set Xjs is analyzed independently to discriminate between the
two classes w. and w,, associated with change and no-change classes, respectively. The
desired partitioning for the generic scale n can be obtained by thresholding X;. It is
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worth noting that since the threshold value is scale-dependent, given the set of images
Xms = X2k, ..., X{'R, ..., X% '}, we should determine (either automatically [17,52,59] or
manually) a set of threshold values T = (°,..., 1,..., TN-1). Regardless of the
threshold-selection method adopted, a sequence of change-detection maps
MMS = (M° ..., M",..., MY "1} is obtained from the i images in Xys = X%, X%, ...,
Xtk '}. A generic p1xe1 M(z,]) in the final change-detection map M is assigned to the class it
belongs to in the map M*/ (€ Mys) computed at its optimal selected scale, i.e.,

M(@i, j) € o & M*(i,j) € o, withk={c,u} and Sj<N-1 (5.14)

The accuracy of the resulting change-detection map depends both on the accuracy of the
maps in the multi-resolution sequence and on the effectiveness of the procedure adopted
to select the optimal resolution level. Both aspects are affected by the amount of residual
noise in X{4.

The second approach that considers FDL-ARS, makes the decision process more robust
to noise. For each pixel, the set Myys (i,7) = {M° (i,j),..., M" (i,j),..., M®7 (i, )} of the
related reliable multi-resolution labels is considered. Each label in Miys can be seen as a
decision of a member of a pool of experts. Thus the pixel is assigned to the class that
obtains the highest number of votes. In fact, the final change-detection map M is com-
puted by applying a majority voting rule to the set Myis(i, j), at each spatial position. The
class that receives the largest number of votes V,, (i,j), k = {c, u}, represents the final
decision for the considered input pattern, i.e.,

M@, j) € o & wr = arg max {th(i, ])}, k= {c, u} (5.15)
wp €

The main disadvantage of the FDL-ARS strategy is that it only considers the final
classification of each pixel at different reliable scales. A better utilization of the informa-
tion in the multi-resolution sequence Xys can be obtained by considering a fusion at
feature level strategy (FFL-ARS). To accomplish the fusion process at different scales, a
new set of images Xy = (Xygs - - -» Xngsr - -» Xngs } is computed by averaging all possible
sequential combinations of images in Xys, i.e.,

Xl’z/ls_nJrlZXLR’ withn=0,1,..., N-1 (5.16)

where the superscript n identifies the highest scale included in the average operation.
When low values of 1 are considered, the image Xys contains a large amount of both
geometrical details and speckle components, whereas when 7 increases, the image Xyq
contains a smaller amount of both geometrical details and speckle components. A pixel in
position (i, j) is assigned fo the class obtained by applying a standard thresholding
procedure to the image X, S;; < N — 1, computed by averaging on the reliable scales
selected for that spatial position, i.e.,

P S;:
M, j) € {“’“ i Xyl j) < T (5.17)

w. if X Sz] NS W) >TSi

where T/ is the decision threshold optimized (either automatically [17,52,59] or manu-
ally) for the considered image X, ws- The latter strategy is capable of exploiting also the
information component in the speckle, as it considers all the high frequencies in the
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decision process. It is worth noting that in the FFL-ARS strategy, as the information
present at a given scale r is also contained in all images Xi'r with n < r, the components
characterizing the optimal scale S;; (and the scales closer to the optimal one) in the fusion
process are implicitly associated with greater weights than those associated with other
considered levels. This seems reasonable, given the importance of these components for
the analyzed spatial position.

5.4 Experimental Results and Comparisons

In this section experimental results obtained by applying the proposed multi-scale
change-detection technique to a data set of multi-temporal remote-sensing SAR images
are reported. These results are compared with those obtained by applying standard
single-scale change-detection techniques to the same data set. In all trials involving
image thresholding, the optimal threshold value was obtained according to a manual
trial-and-error procedure. We selected for each image the threshold value (among all
possible) that showed the minimum overall error in the change-detection map compared
to the available reference map. This ensured it is possible to properly compare method
performances without any bias due to human operator subjectivity or to the kind of
automatic thresholding algorithm adopted. However, any type of automatic threshold-
selection technique can be used with this technique (see Ref. [17] for more details about
automatic thresholding of the log-ratio image). Performance assessment was accom-
plished both quantitatively (in terms of overall errors, false, and missed alarms) and
qualitatively (according to a visual comparison of the produced change-detection maps
with reference data).

5.4.1 Data Set Description

The data set used in the experiments is made up of two SAR images acquired by the ERS-
1 SAR sensor (C-band and VV-polarization) in the province of Saskatchewan (Canada)
before (1st July) and after (14th October) the 1995 fire season. The two images considered
are characterized by a geometrical resolution of 25 m in both directions and by a nominal
number of looks equal to 5. The selected test site (see in Figure 5.4a and Figure 5.4b) is a
section (350x350 pixels) of the entire available scene. A fire caused by a lightning event
destroyed a large portion of the vegetation in the considered area between the two dates
mentioned above.

The two multi-look intensity images were geocoded using the digital elevation model
(DEM) GTOPO30; no speckle reduction algorithms were applied to the images. The log-
ratio image was computed from the above data according to Equation 5.4.

To enable a quantitative evaluation of the effectiveness of the proposed approach, a
reference map was defined manually (see Figure 5.5b). To this end, we used the available
ground-truth information provided by the Canadian Forest Service (CFS) and by the fire
agencies of the individual Canadian provinces. Ground-truth information is coded in a
vector format and includes information about fires (e.g., geographical coordinates, final
size, cause, etc.) that occurred from 1981 to 1995 and in areas greater than 200 ha in
final size. CFS ground truth was used for a rough localization of the burned areas as it
shows a medium geometrical resolution. An accurate identification of the boundaries of
the burned areas was obtained from a detailed visual analysis of the two original 5-look
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(b)

FIGURE 5.4
Images of the Saskatchewan province, Canada, used in the experiments. (a) Image acquired from the ERS-1 SAR
sensor in July 1995, (b) image acquired from the ERS-1 SAR sensor in October 1995, and (c) analyzed log-ratio image.

intensity images (Figure 5.4a and Figure 5.4b), the ratio image, and the log-ratio image
(Figure 5.4c), carried out accurately in cooperation with experts in SAR-image interpret-
ation. In particular, different color composites of the above-mentioned images were used
to highlight all the portions of the changed areas in the best possible way. It is worth
noting that no despeckling or wavelet-based analysis was applied to the images exploited
to generate the reference map for this process to be as independent as possible of the
methods adopted in the proposed change-detection technique. In generating the reference
map, the irregularities of the edges of the burned areas were faithfully reproduced to
enable accurate assessment of the effectiveness of the proposed change-detection
approach. At the end of the process, the obtained reference map contained 101219 un-
changed pixels and 21281 changed pixels. Our goal was to obtain, with the proposed
automatic technique, a change-detection map as similar as possible to the reference map
obtained according to the above-mentioned time-consuming manual process driven by
ground-truth information and by experts in SAR image interpretation.
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FIGURE 5.5

Multi-scale image sequence obtained by applying the wavelet decomposition procedure to the log-ratio image
Xus = {Xig, .., Xir):

5.4.2 Results

Several experiments were carried out to assess the effectiveness of the proposed change-
detection technique (which is based on scale-driven fusion strategies) with respect to
classical methods (which are based on thresholding of the log-ratio image).

In all trials involving image thresholding, the optimal threshold value was obtained
according to a manual trial-and-error procedure. Among all possible values, we selected
for each image the threshold value that showed the minimum overall error in the change-
detection map compared to the reference map. Subsequently, it was possible to evaluate
the optimal performance of the proposed methodology without any bias due to human
operator subjectivity or to the fact that the selection was made by an automatic thresh-
olding algorithm. However, any type of automatic threshold-selection technique can be
used with this technique (see Ref. [17] for more details about automatic thresholding of
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the log-ratio image). As the described procedure is independently optimized for
each considered image, it leads to different threshold values in each case. Performance
assessment was accomplished both quantitatively (in terms of overall errors, false, and
missed alarms) and qualitatively (according to a visual comparison of the produced
change-detection maps with reference data).

To apply the three scale-driven fusion strategies (see Section 5.3.3), the log-ratio image
was first decomposed into seven resolution levels by applying the Daubechies-4 SWT.
Each computed approximation sub-band was used to construct different scales, that is,
Xums = (Xig, ..., XIr) (see Figure 5.5). For simplicity, only approximation sub-bands
have been involved in the reconstruction phase (it is worth noting that empirical experi-
ments on real data have confirmed that details sub-band elimination does not affect the
change-detection accuracy). Observe that the full-resolution original image Xir (= X{x)
was discarded from the analyzed set, as it was affected by a strong speckle noise. In
particular, empirical experiments pointed out that when X7ris used on this data set the
accuracy of the proposed change-detection technique gets degraded. Nevertheless, in the
general case, resolution level 0 can also be considered and should not be discarded a priori.
A number of trials were carried out to identify the optimal window size to compute the
local coefficient of variation (LCV") used to detect detail pixels (e.g., border) at different
resolution levels. The optimal size (i.e., the one that gives the minimum overall error) was
selected for all analyzed strategies (see Table 5.3).

Table 5.3 summarizes the quantitative results obtained with the different fusion
strategies. As can be seen from the analysis of the overall error, the FFL-ARS strategy
gave the lowest error, i.e., 5557 pixels, while the FDL-ARS strategy gave 6223, and the
FDL-OSS strategy 7603 (the highest overall error). As expected, by including all the
reliable scales in the fusion phase it was possible to improve the change-detection
accuracy compared to a single “optimal”” scale. The FFL-ARS strategy gave the lowest
false and missed alarms, decreasing their values by 1610 and 436 pixels, respectively,
compared to the FDL-OSS strategy. This is because on the one hand the FDL-OSS
procedure is penalized both by the change-detection accuracy at a single resolution
level (which is significantly affected by noise when fine scales are considered) and by
residual errors in identifying the optimal scale of a given pixel; on the other hand, the use
of the entire subset of reliable scales allows a better exploitation of the information at the
highest resolution levels of the multi-resolution sequence in the change-detection process.
It is worth noting that FFL-ARS outperformed FDL-ARS also in terms of false (2181 vs.
2695) and missed (3376 vs. 3528) alarms. This is mainly due to its ability to handle better
all the information in the scale-dependent images before the decision process. This leads
to a more accurate recognition of critical pixels (i.e., pixels that are very close to the
boundary between the changed and unchanged classes on the log-ratio image) that

TABLE 5.3

Overall Error, False Alarms, and Missed Alarms (in Number of Pixels and Percentage) Resulting
from the Proposed Adaptive Scale-Driven Fusion Approaches

False Alarms Missed Alarms Overall Errors
Fusion Strategy Pixels % Pixels % Pixels % LCV Window Size
FDL-OSS 3791 3.75% 3812 17.91% 7603 6.21% 23 x 23
FDL-ARS 2695 2.66% 3528 16.58% 6223 5.08% 7x7

FFL-ARS 2181 2.15% 3376 15.86% 5557 4.54% 5x5
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FIGURE 5.6
(a) Change-detection map obtained for the considered data set using the FFL-ARS strategy on all reliable scales
and (b) reference map of the changed area used in the experiment.

exploit the joint consideration of all the information present at the different scales in the
decision process. For a better understanding of the results achieved, we made a visual
analysis of the change-detection maps obtained. Figure 5.6a shows the change-detection
map obtained with the FFL-ARS strategy (which proved to be the most accurate), while
Figure 5.6b is the reference map. As can be seen, the considered strategy produced
a change-detection map that was very similar to the reference map. In particular, the
change-detection map obtained with the proposed approach shows good properties both
in terms of detail preservation and in terms of high accuracy in homogeneous areas.

To assess the effectiveness of the scale-driven change-detection approach, the results
obtained with the FFL-ARS strategy were compared with those obtained with a classical
change-detection algorithm. In particular, we computed a change-detection map by an
optimal (in the sense of minimum error) thresholding of the log-ratio image obtained after
despeckling with the adaptive enhanced Lee filter [74]. The enhanced Lee filter was
applied to the two original images (since a multiplicative speckle model is required).
Several trials were carried out while varying the window size, to find the value that leads
to the minimum overall error. The best result for the considered test site (see Table 5.4)
was obtained with a 7x7 window size. The thresholding operation gave an overall error
of 8053 pixels. This value is significantly higher than the overall error obtained with the

TABLE 5.4

Overall Error, False Alarms, and Missed Alarms (in Number of Pixels and Percentage) Resulting
from Classical Change-Detection Approaches

False Alarms Missed Alarms Total Errors

Applied Filtering Technique  Pixels % Pixels % Pixels % Filter Window Size

Enhanced Lee filter 3725  3.68% 4328  20.34% 8053 = 6.57% 7x7
Gamma MAP filter 3511 3.47% 4539  21.33% 8050  6.57% 7x7
Wavelet de-noising 2769 2.74% 4243 19.94% 7012 5.72% —
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FFL-ARS strategy (i.e., 5557). In addition the proposed scale-driven fusion technique also
decreased both the false (2181 vs. 3725) and the missed alarms (3376 vs. 4328) compared to
the considered classical procedure. From a visual analysis of Figure 5.7a and Figure 5.6a
and Figure 5.6b, it is clear that the change-detection map obtained after the Lee-based
despeckling procedure significantly reduces the geometrical detail content in the final
change-detection map compared to that obtained with the FFL-ARS approach. This is
mainly due to the use of the filter, which not only results in a significant smoothing of the
images but also strongly reduces the information component present in the speckle.
Similar results and considerations both from a quantitative and qualitative point of
view were obtained by filtering the image with the Gamma MAP filter (compare
Table 5.3 and Table 5.4).

Furthermore, we also analyzed the effectiveness of classical thresholding of the log-
ratio image after de-noising with a recently proposed more advanced despeckling
procedure. In particular, we investigated a DWT-based de-noising [69,75] technique
(not used previously in change-detection problems). This technique achieves noise re-
duction in three steps: (1) image decomposition (DWT), (2) thresholding of wavelet
coefficients, and (3) image reconstruction by inverse wavelet transformation (IDWT)
[69,75]. It is worth noting also that this procedure is based on the multi-scale decompos-
ition of the images. We can therefore better evaluate the effectiveness of the scale-driven
procedure in exploiting the multi-scale information obtained by the DWT decomposition.
Wavelet-based de-noising was applied to the log-ratio image because an additive speckle
model was required. Several trials were carried out varying the wavelet-coefficient de-
noising algorithm while keeping the type of wavelet fixed, that is, Daubechies-4 (the same
used for multi-level decomposition). The best change-detection result (see Table 5.4) was
obtained by soft thresholding detail coefficients according to the universal threshold
T = +/20%log(I-]), where I - | is the image size and o is the estimated noise variance
[75]. The soft thresholding procedure sets detail coefficients that fall between T and —T to
zero, and shrinks the module of coefficients that fall out of this interval by a factor T. The
noise variance estimation was performed by computing the variance of the diagonal-
detail sub-band at the first decomposition level, given the above thresholding approach.
However, in this case also the error (i.e., 7012 pixels) obtained was significantly higher
than the overall error obtained with the multi-scale change-detection technique based on
the FFL-ARS strategy (i.e., 5557 pixels). Moreover, the multi-scale method performs better
also in terms of false and missed alarms, which were reduced from 4243 to 3376, and from
2769 to 2181, respectively (see Table 5.3 and Table 5.4). By analyzing Figure 5.7b, Figure
5.6a, and Figure 5.6b, it can be seen that the change-detection map obtained by thresh-
olding the log-ratio image after applying the DWT-based de-noising algorithm preserves
geometrical information well.

Nevertheless, on observing the map in greater detail, it can be concluded qualitatively
that the spatial fidelity obtained with this procedure is lower than that obtained with the
proposed approach. This is confirmed, for example, when we look at the right part of
the burned area (circles in Figure 5.7b), where some highly irregular areas saved from
the fire are properly modeled by the proposed technique, but smoothed out by the
procedure based on DWT de-noising. This confirms the quantitative results and thus
the effectiveness of the proposed approach in exploiting information from multi-level
image decomposition.

It is worth noting that the improvement in performance shown by the proposed
approach was obtained without any additional computational burden compared to the
thresholding procedure after wavelet de-noising. In particular, both methods require
analysis and synthesis steps (though for different purposes). The main difference
between the two considered techniques is the scale-driven combination step, which
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FIGURE 5.7
Change-detection maps obtained for the considered data set by optimal manual thresholding of the log-ratio
image after the despeckling with (a) the Lee-enhanced filter and (b) the DWT-based technique.

does not increase the computational time required by the thresholding of detail coeffi-
cients according to the standard wavelet-based de-noising procedure.

5.5 Conclusions

In this chapter the problem of unsupervised change detection in multi-temporal remote-
sensing images has been addressed. In particular, after a general overview on the unsuper-
vised change-detection problem, attention has been focused on multi-temporal SAR
images. A brief analysis of the literature on unsupervised techniques in SAR images
has been reported, and a novel adaptive scale-driven approach to change detection in
multi-temporal SAR data (recently developed by the authors) has been proposed.
Unlike classical methods, this approach exploits information at different scales (obtained
by a wavelet-based decomposition of the log-ratio image) to improve the accuracy and
geometric fidelity of the change-detection map.

Three different fusion strategies that exploit the subset of reliable scales for each pixel
have been proposed and tested: (1) fusion at the decision level by an optimal scale
selection (FDL-OSS), (2) fusion at the decision level of all reliable scales (FDL-ARS), and
(3) fusion at the feature level of all reliable scales (FFL-ARS). As expected, a comparison
among these strategies showed that fusion at the feature level led to better results than the
other two procedures, in terms both of geometrical detail preservation and accuracy in
homogeneous areas. This is due to a better intrinsic capability of this technique to exploit
the information present in all the reliable scales for the analyzed spatial position, includ-
ing the amount of information present in the speckle.

Experimental results confirmed the effectiveness of the proposed scale-driven approach
with the FFL-ARS strategy on the considered data set. This approach outperformed a
classical change-detection technique based on the thresholding of the log-ratio image
after a proper despeckling based on the application of the enhanced Lee filter and
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also of the Gamma filter. In particular, change detection after despeckling resulted in a
higher overall error, more false alarms and missed alarms, and significantly lower
geometrical fidelity. To further assess the validity of the proposed approach, the standard
technique based on the thresholding of the log-ratio image was applied after a despeck-
ling phase applied according to an advanced DWT-based de-noising procedure (which
has not been used previously in change-detection problems). The obtained results suggest
that the proposed approach performs slightly better in terms of spatial fidelity and
significantly increases the overall accuracy of the change-detection map. This confirms
that on the considered data set and for solving change-detection problems, the scale-
driven fusion strategy exploits the multi-scale decomposition better than standard de-
noising methods.

It is worth noting that all experimental results were carried out applying an optimal
manual trial-and-error threshold selection procedure, to avoid any bias related to the
selected automatic procedure in assessing the effectiveness of both the proposed and
standard techniques. Nevertheless, this step can be performed adopting automatic thresh-
olding procedures [17,50].

As a final remark, it is important to point out that the proposed scale-driven approach
is intrinsically suitable to be used with very high geometrical resolution active (SAR) and
passive (PAN) images, as it properly handles and processes the information present at
different scales. Furthermore, we think that the use of multi-scale and multi-resolution
approaches represents a very promising avenue for investigation to develop advanced
automatic change-detection techniques for the analysis of very high spatial resolution
images acquired by the previous generation of remote-sensing sensors.
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6.1 Introduction

Using multi-temporal SAR images of the same scene, analysts employ several methods to
determine changes among the set [1]. Changes may be abrupt in which case only two
images are required or it may be gradual in which case several images of a given scene are
compared to identify changes. The former case is considered here, where SAR images are
analyzed to detect land mines. Much of the change-detection activity has been focused on
optical data for specific applications, for example, several change-detection methods are
implemented and compared to detect land-cover changes in multi-spectral imagery [2].
However, due to the natural limitations of optical sensors, such as sensitivity to weather
and illumination conditions, SAR sensors may constitute a superior sensor for change
detection as images for this purpose are obtained at various times of the day under
varying conditions.

SAR systems are capable of collecting data in all weather conditions and are unaffected
by cloud cover or changing sunlight conditions. Exploiting the long-range propagation
qualities of radar signals and utilizing the complex processing capabilities of current
digital technology, SAR produces high-resolution imagery providing a wealth of infor-
mation in many civilian and military applications. One major characteristic of SAR data is

135
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the presence of speckle noise, which poses a challenge in classification. SAR data taken
from different platforms also shows high variability.

The accuracy of preprocessing tasks, such as image registration, also affects the accur-
acy of the postprocessing task of change detection. Image registration, the process of
aligning images into the same coordinate frame, must be done prior to change detection.
Image registration can be an especially nontrivial task in instances where the images are
acquired from nonstationary sources in the presence of sensor motion. In this paper we do
not address the issue of image registration, but note that there is a plethora of information
available on this topic and a survey is provided in Ref. [3].

In Ref. [4], Mayer and Schaum implemented several transforms on multi-temporal
hyperspectral target signatures to improve target detection in a matched filter. The
transforms implemented in their paper were either model-dependent, based solely on
atmospheric corrections, or image-based techniques. The image-based transforms, includ-
ing one that used Wiener filtering, yielded improvements in target detection using the
matched filter and proved robust to various atmospheric conditions.

In Ref. [5], Rignot and van Zyl compared various change-detection techniques for SAR
imagery. In one method they implemented image ratioing, which proves more appropri-
ate for SAR than simple differencing. However, the speckle decorrelation techniques they
implemented outperform the ratio method under certain conditions. The results lead to
the conclusion that the ratio method and speckle decorrelation method have compli-
mentary characteristics for detecting gradual changes in the structural and dielectric
properties of remotely sensed surfaces.

In Ref. [6], Ranney and Soumekh evaluated change detection using the so-called
signal subspace processing method, which is similar to the subspace projection tech-
nique [7], to detect mines in averaged multi-look SAR imagery. They posed the problem
as a trinary hypothesis-testing problem to determine whether no change has occurred, a
target has entered a scene, or whether a target has left the scene. In the signal subspace
processing method, one image is modeled as the convolution of the other image by a
transform that accounts for variances in the image-point response between the refer-
ence and test images due to varying conditions present during the different times of
data collection.

For the detection of abrupt changes in soil characteristics following volcanic eruptions,
in Ref. [8] a two-stage change-detection process was utilized using SAR data. In the first
stage, the probability distribution functions of the classes present in the images were
estimated and then changes in the images via paradoxical and evidential reasoning were
detected. In Ref. [9], difference images are automatically analyzed using two different
methods based on Bayes theory in an unsupervised change-detection paradigm, which
estimates the statistical distributions of the changed and unchanged pixels using an
iterative method based on the expectation maximization algorithm. In Ref. [10], the
performance of the minimum error solution based on the matrix Wiener filter was
compared to the covariance equalization method (CE) to detect changes in hyperspectral
imagery. They found that CE, which has relaxed operational requirements, is more robust
to imperfect image registration than the matrix Wiener filter method.

In this chapter, we have implemented image differencing, ratio, Euclidean distance,
Mahalanobis distance, subspace projection-based, and Wiener filter-based change detec-
tion and compared their performances to one another. We demonstrate all algorithms on
co-registered SAR images obtained from a high resolution, VV-polarized SAR system. In
Section 6.2 we discuss difference-based change detection, Euclidean distance, and ratio
change-detection methods, which comprise the simpler change-detection methods imple-
mented in this paper. In Section 6.3 through Section 6.5, we discuss more complex
methods such as Mahalanobis distance, subspace projection-based change detection,
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and Wiener filter-based change detection, respectively. We consider specific implemen-
tation issues in Section 6.6 and present results in Section 6.7. Finally, a conclusion is
provided in Section 6.8.

6.2 Difference, Euclidean Distance, and Image Ratioing
Change-Detection Methods

In simple difference-based change detection, a pixel from one image (the reference image)
is subtracted from the pixel in the corresponding location of another image (the test
image), which has changed with respect to the reference image. If the difference is greater
than a threshold, then a change is said to have occurred. One can also subtract a block of
pixels from one image from the corresponding block from a test image. This is referred to
as Euclidean difference if the blocks of pixels are arranged into vectors and the L-2 norm
of the difference of these vectors is computed. We implemented the Euclidean distance as
in Equation 6.1, where we computed the difference between a block of pixels (arranged
into a one-dimensional vector) from reference image, fx, and the corresponding block in
the test image, fy, to obtain an error, eg:

eg = (y — x)T (6.1)

where x and y are vectors of pixels taken from fx and fy, respectively. We display this
error, e, as an image. When no change has occurred this error is expected to be low and
the error will be high when a change has occurred. While simple differencing considers
only two pixels in making a change decision, the Euclidean distance takes into account
pixels within the neighborhood of the pixel in question. This regional decision may have a
smoothing effect on the change image at the expense of additional computational com-
plexity.

Closely related to the Euclidean distance metric for change detection is image ratioing.
In many change-detection applications, ratioing proved more robust to illumination
effects than simple differencing. It is implemented as follows:

_Y
eR = o (6.2)

where y and x are pixels from the same locations in the test and reference images,
respectively.

6.3 Mahalanobis Distance-Based Change Detection

Simple techniques like differencing and image ratioing suffer from sensitivity to noise and
illumination intensity variations in the images. Therefore, these methods may prove
adequate only for applications to images with low noise and which show little illumin-
ation variation. These methods may be inadequate when applied to SAR images due to the
presence of highly correlated speckle noise, misregistration errors, and other unimportant
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changes in the images. There may be differences in the reference and test images caused
by unknown fluctuations in the amplitude-phase in the radiation pattern of the physical
radar between the two data sets and subtle inconsistencies in the data acquisition circuitry
[5]; consequently, more robust methods are sought.

One such method uses the Mahalanobis distance to detect changes in SAR imagery. In
this change-detection application, we obtain an error (change) image by computing the
Mahalanobis distance between x and y to obtain eyp as follows:

emp = (x —y) Cx'(x — y) (6.3)

The Cx' term in the Mahalanobis distance is the inverse covariance matrix computed
from vectors of pixels in fx. By considering the effects of other pixels in making a change
decision with the inclusion of second-order statistics, the Mahalanobis distance method is
expected to reduce false alarms. The Cx' term should improve the estimate by reducing
the effects of background clutter variance, which, for the purpose of detecting mines in
SAR imagery, does not constitute a significant change.

6.4 Subspace Projection-Based Change Detection

To apply subspace projection [11] to change detection a subspace must be defined for
either the reference or the test image. One may implement Gram-Schmidt orthogonaliza-
tion as in [6] or one can make use of eigen-decomposition to define a suitable subspace for
the data. We computed the covariance of a sample from fx and its eigenvectors and
eigenvalues as follows:

Cx = (X — py)(X — py)" (6.4)

where X is a matrix of pixels whose columns represent a block of pixels from fx, arranged
as described in Section 6.6.1, having mean px = Xlyxn. Inxn iS @ square matrix of size
NxN whose elements are 1/N, where N is the number of columns of X. We define the
subspace of the reference data, which we can express using eigen-decomposition in terms
of its eigenvectors, Z, and eigenvalues, V:

Cx =2ZVZ' (6.5)

We truncate the number of eigenvectors in Z, denoted by Z, to develop a subspace
projection operator, Px:

Py =2Z" (6.6)

The projection of the test image onto the subspace of the reference image will provide a
measure of how much of the test sample is represented by the reference image. Therefore,
by computing the squared difference between the test image and its projection onto
the subspace of the reference image we obtain an estimate of the difference between the
two images:

esp(y) = [y" (I - Px)y] (6.7)
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We evaluated the effects of various levels of truncation and display the best results
achieved. In our implementations we include the Cx' term in the subspace projection
error term as follows:

esp(y) = y'(I - Px)' Cx'(I - Px)y (68)
We expect it will play a similar role as it does in the Mahalanobis prediction and further

diminish false alarms by suppressing the background clutter.
Expanding the terms in (6.8) we get

esp(y) = ¥ Cx'y — y'PXCx'y — y'Cx'Pxy + y'PXCx'Pyy (6.9)
It can be shown that y"Cy'Pxy = yTPYCy'y = y"PXC;'Pxy, so we can rewrite (6.9) as

esp(y) = y' Cx'y — yCx' Pxy’ (6.10)

6.5 Wiener Prediction-Based Change Detection

We propose a Wiener filter-based change-detection algorithm to overcome some of the
limitations of simple differencing, namely to exploit the highly correlated nature of
speckle noise, thereby reducing false alarms. Given two stochastic, jointly wide-sense
stationary signals, the Wiener equation can be implemented for prediction of one data set
from the other using the auto-and cross-correlations of the data. By minimizing the
variance of the error committed in this prediction, the Wiener predictor provides the
optimal solution in the linear minimum mean-squared error sense.

If the data are well represented by the second-order statistics, the Wiener prediction
will be very close to the actual data. In applying Wiener prediction theory to change
detection the number of pixels where abrupt change has occurred is very small relative to
the total number of pixels in the image; therefore, these changes will not be adequately
represented by the correlation matrix. Consequently, there will be a low error in the
prediction where the reference and test images are the same and no change exists between
the two, and there will be a large error in the prediction of pixels where a change
has occurred.

The Wiener filter [11] is the linear minimum mean-squared error filter for second-order
stationary data. Consider the signal yyv = Wx. The goal of Wiener filtering is to find W,
which minimizes the error, ey = || y — yw ||, where y represents a desired signal. In the
case of change detection y is taken from the test image, fy, which contains changes as
compared to the reference image, fx. The Wiener filter seeks the value of W, which
minimizes the mean-squared error, eyw. If the linear minimum mean-squared error esti-
mator of Y satisfies the orthogonality condition, the following expressions hold:

E{(Y — WX)X}}
E{YX"} — E{wxx"}
Ryx — WRxx

0
0
0

(6.11)

where E{-} represents the expectation operator, X is a matrix of pixels whose columns
represent a block of pixels from fx, Y is a matrix of pixels from f, whose columns
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represent a block of pixels at the same locations as those in X, Ryx is the cross-correlation
matrix of X and Y, and Ry is the autocorrelation matrix of X. For a complete description
of the construction of X and Y see Section 6.6.1. Equations 6.11 imply that W satisfies the
Wiener-Hopf equation, which has the following solution:
W = RyxRyy (6.12)
Therefore, we have:
Vw = RyxRyyx (6.13)

where Ryx = YX" and Rxx = (XX)™". So the error can be computed as follows:

ew = (y—w)" (6.14)

In a modified implementation of the Wiener filter-based change-detection method, we
insert a normalization (or whitening) term, Cx!, into the error equation as follows:

ew = (y — yw) Cx'(y — Jw) (6.15)

We expect it will play a similar role as it does in the Mahalanobis prediction and further
diminish false alarms by suppressing the background clutter. In our work we implemen-
ted Equation 6.15 to detect changes in pixels occurring from one image to another. The
error at each pixel is ey, which we display as an image.

6.6 Implementation Considerations
6.6.1 Local Implementation Problem Formulation

In implementing the Mahalanobis distance, subspace projection-based and the Wiener
filter-based change-detection methods, we constructed our data matrices and vectors
locally to compute the local statistics and generate a change image. We generate X, Y, x,
and y using dual concentric sliding windows. X and Y are matrices of pixels contained
within an outer moving window (size m x m), whose columns are obtained from over-
lapping smaller blocks (x1, Xa,...,Xp each of size nxn) within the outer windows of
the reference image and test image, respectively, as demonstrated in Figure 6.1 and
Figure 6.2 for X, where X = [xy xo- - - xpm]. Accordingly, the dimensions of X and Y will
be NxM, where N = n* and M = m?*. Note, for clarity the windows that generate the
columns of X and Y are not shown as overlapping in Figure 6.2. However, in actual
implementation the X and Y matrices are constructed from overlapping windows within
Xand Y. Figure 6.1 shows x and y, which are Nx1 vectors composed of pixels within the
inner window (size nxn) of the reference image, fx, and test image, fy, respectively. In this
local implementation, we must compute the necessary statistics at each iteration as we
move pixel-by-pixel through the image, thereby generating new X and Y matrices and x
and y vectors.
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FIGURE 6.1
Dual concentric sliding windows of the test and reference images.

6.6.2 Computing Matrix Inversion for Cx' and Rxy

Because of numerical errors, computation of the inverse of these matrices may become
unstable. We compute the pseudo-inverse using eigenvalue decomposition as shown below:

Cl =uv U, (6.16)

where U and V are the matrices of eigenvectors and eigenvalues of Cx, respectively.
However, since the eigenvalues are obtained using a numerical tool, some values are very
small such that its inverse blows up and causes the matrix to be unstable. To avoid this
problem, we discard eigenvalues that are below a certain threshold. We have evaluated
the performance for various thresholds.

Xq

Xp  rereressesessssnn >

Xm

FIGURE 6.2
n Construction of X matrix.




142 Image Processing for Remote Sensing

6.7 Experimental Results

Results from all methods implemented were normalized between zero and one before
producing ROC curves. The threshold to generate the ROC curves also ranged from zero
to one in increments of 10>, We used multi-look data collected at X band from a high
resolution, VV-polarized SAR system (Figure 6.3a and Figure 6.3b). Small mines, com-
prising about a 5x5 pixel area, appear in the test image (Figure 6.3b). The size of both the
reference and test images is 950x950 pixels. Ground truth was provided, which indicates
the approximate center location of the known mines; we defined the mine area as an area
slightly bigger than the average mine, centered at the locations indicated by ground-truth
information. To determine the performance, a hit was tabulated if at least a single pixel
within the mine area surpassed the threshold. Any pixel outside of a mine area, which
surpassed the threshold, was counted as a false alarm.

Figure 6.4a shows the pixel differencing and Figure 6.4b shows the Euclidean distance
change images. The ratio change image obtained from Equation 6.2 is represented in
Figure 6.5. The local implementation results shown in Figure 6.6 through Figure 6.8 are
from implementations where the inner window was of size 3x3; the outer window, from
which we constructed X and Y matrices to compute the second-order statistics, was of size
13x13. We gathered 169 overlapping 3x3 blocks from the 13x13 area, arranged each into
a 9x1 vector, and placed them as columns in a matrix of size 9x169. We re-computed X
and Y at each iteration to determine the change at each pixel.

The three very bright spots in the original images, Figure 6.3, are used to register the
images and were identified as changes in the simple change-detection methods. The local
methods that incorporated image statistics were able to eliminate these bright areas from
the change image (Figure 6.6 through Figure 6.8), as they are present in both the
reference and test images at different intensities. Another area of the image that results
in many false alarms, after processing by the simpler methods (results shown in Figure
6.4a,b, and Figure 6.5), is the area in the upper right quadrant of the image. In the test
image, Figure 6.3b, this area is comprised of several slanted lines, while in the reference

(a) (b)

FIGURE 6.3
Original SAR Images: (a) reference image, (b) test image with mines contained in elliptical area.
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(a) (b)

FIGURE 6.4
(a) Simple difference change image, (b) Euclidean distance change image.

image, Figure 6.3a, there is a more random, grainy pattern. The Wiener filter—based
method with Cx', Mahalanobis distance, and the subspace projection method with Cx'
methods all show far fewer false alarms in this area than is shown in the results from the
simpler change-detection methods. ROC curves for the simple change-detection methods
can be seen in Figure 6.9a and ROC curves for the more complicated methods that have
the Cx' term are shown in Figure 6.9b. A plot of the ROC curves for all the methods
implemented is displayed in Figure 6.10 for comparison.

N\

FIGURE 6.5
Ratio change image.
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FIGURE 6.6
Local Mahalanobis distance change image.

Local Wiener with Cx', local Mahalanobis, local subspace projection with Cx', and
ratio methods show similar performance. However, the local Mahalanobis distance
method begins to perform worse than the others from about .4 to .65 probability of
detection (Pd) rate, then surpasses all the other methods above Pd =.65. The simple
difference method has the worst performance over all Pd rates.

FIGURE 6.7
Local subspace projection (with Cx' term)
change image.
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FIGURE 6.8
Local Wiener filter-based (with Cx' term)
change image.

6.8 Conclusions

As we have only demonstrated the algorithms on a limited data set of one scene, it is not
prudent to come to broad conclusions. However there are some trends indicated by the

(a) (b)

ROC, simple change detection methods ROC, change detection methods with Cy!
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ROC curves displaying performance of (a) simple change-detection methods and (b) methods incorporating
Cx' term.
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ROC curves displaying performance of the various change-detection methods implemented in this paper.

results above. The results above indicate that in general the more complex algorithms
exhibited superior performance as compared to the simple methods; the exception seems
to be the ratio method. The ratio method, although a simple implementation, has
a performance that is competitive with the more complex change-detection methods
implemented up to a Pd rate approximately equal to .65. Its performance degrades at
higher detection rates, where it suffers from more false alarms than the methods that have
the Cx'.

Results indicate that taking into account the local spatial and statistical properties of the
image improves the change-detection performance. Local characteristics are used in
computing the inverse covariance matrix, resulting in fewer false alarms as compared
to the simple change detection methods. The ROC curves in Figure 6.9 and Figure 6.10
also show that that addition of the Cx' term may serve to mitigate false alarms that arise
from speckle, which is a hindrance to achieving low false alarm rates with the Euclidean
distance and simple difference methods. As expected the simple difference method
exhibits the worst performance, having a high occurrence of false alarms.
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7.1 Introduction

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of
the different materials at specific wavelengths [2,3]. Hyperspectral sensors have been
developed to sample the scattered portion of the electromagnetic spectrum extending
from the visible region through the near-infrared and mid-infrared, in hundreds of
narrow contiguous bands [4,5]. The number and variety of potential civilian and military
applications of hyperspectral remote sensing is enormous [6,7].

Very often, the resolution cell corresponding to a single pixel in an image contains
several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of
the endmember spectra. A challenging task underlying many hyperspectral imagery
applications is then decomposing a mixed pixel into a collection of reflectance spectra,
called endmember signatures, and the corresponding abundance fractions [8-10].

Depending on the mixing scales at each pixel, the observed mixture is either linear or
nonlinear [11,12]. Linear mixing model holds approximately when the mixing scale is
macroscopic [13] and there is negligible interaction among distinct endmembers [3,14]. If,
however, the mixing scale is microscopic (or intimate mixtures) [15,16] and the incident
solar radiation is scattered by the scene through multiple bounces involving several
endmembers [17], the linear model is no longer accurate.

*Work partially based on [1].
149
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Linear spectral unmixing has been intensively researched in the last years [9,10,12,
18-21]. It considers that a mixed pixel is a linear combination of endmember signatures
weighted by the correspondent abundance fractions. Under this model, and assuming
that the number of substances and their reflectance spectra are known, hyperspectral
unmixing is a linear problem for which many solutions have been proposed (e.g., max-
imum likelihood estimation [8], spectral signature matching [22], spectral angle mapper
[23], subspace projection methods [24,25], and constrained least squares [26]).

In most cases, the number of substances and their reflectances are not known
and, then, hyperspectral unmixing falls into the class of blind source separation
problems [27]. Independent component analysis (ICA) has recently been proposed as a
tool to blindly unmix hyperspectral data [28-31]. ICA is based on the assumption of
mutually independent sources (abundance fractions), which is not the case of hyperspec-
tral data, since the sum of abundance fractions is constant, implying statistical depend-
ence among them. This dependence compromises ICA applicability to hyperspectral
images as shown in Refs. [21,32]. In fact, ICA finds the endmember signatures by
multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual
information among sources. If sources are independent, ICA provides the correct
unmixing, since the minimum of the mutual information is obtained only when sources
are independent. This is no longer true for dependent abundance fractions. Never-
theless, some endmembers may be approximately unmixed. These aspects are addressed
in Ref. [33].

Under the linear mixing model, the observations from a scene are in a simplex whose
vertices correspond to the endmembers. Several approaches [34-36] have exploited this
geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT)
algorithm [36] determines the simplex of minimum volume containing the data. The
method presented in Ref. [37] is also of MVT type but, by introducing the notion of
bundles, it takes into account the endmember variability usually present in hyperspectral
mixtures.

The MVT type approaches are complex from the computational point of view. Usually,
these algorithms find in the first place the convex hull defined by the observed data and
then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38]
computes the convex hull of n data points in a d-dimensional space with a computational
complexity of O(n'%/?!*1), where | x| is the highest integer lower or equal than x and 1 is
the number of samples. The complexity of the method presented in Ref. [37] is even
higher, since the temperature of the simulated annealing algorithm used shall follow a
log(-) law [39] to assure convergence (in probability) to the desired solution.

Aiming at a lower computational complexity, some algorithms such as the pixel purity
index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing
the data cloud, but they assume the presence of at least one pure pixel of each endmember
in the data. This is a strong requisite that may not hold in some data sets. In any case,
these algorithms find the set of most pure pixels in the data.

PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to
reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then
projects every spectral vector onto skewers (large number of random vectors) [35,42,43].
The points corresponding to extremes, for each skewer direction, are stored. A cumulative
account records the number of times each pixel (i.e., a given spectral vector) is found to be
an extreme. The pixels with the highest scores are the purest ones.

N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume
defined by a simplex formed by the purest pixels is larger than any other volume defined
by any other combination of pixels. This algorithm finds the set of pixels defining the
largest volume by inflating a simplex inside the data.
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ORASIS [44,45] is a hyperspectral framework developed by the U.S. Naval Research
Laboratory consisting of several algorithms organized in six modules: exemplar selector,
adaptative learner, demixer, knowledge base or spectral library, and spatial postproces-
sor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module
is used to select spectral vectors that best represent the smaller convex cone containing the
data. The other pixels are rejected when the spectral angle distance (SAD) is less than a
given threshold. The procedure finds the basis for a subspace of a lower dimension using
a modified Gram-Schmidt orthogonalization. The selected vectors are then projected onto
this subspace and a simplex is found by an MVT process. ORASIS is oriented to real-time
target detection from uncrewed air vehicles using hyperspectral data [46].

In this chapter we develop a new algorithm to unmix linear mixtures of endmember
spectra. First, the algorithm determines the number of endmembers and the signal
subspace using a newly developed concept [47,48]. Second, the algorithm extracts the
most pure pixels present in the data. Unlike other methods, this algorithm is completely
automatic and unsupervised.

To estimate the number of endmembers and the signal subspace in hyperspectral linear
mixtures, the proposed scheme begins by estimating signal and noise correlation matri-
ces. The latter is based on multiple regression theory. The signal subspace is then
identified by selecting the set of signal eigenvalues that best represents the data, in the
least-square sense [48,49], we note, however, that VCA works with projected and with
unprojected data.

The extraction of the endmembers exploits two facts: (1) the endmembers are the vertices
of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and
N-FINDR algorithms, VCA also assumes the presence of pure pixels in the data. The
algorithm iteratively projects data onto a direction orthogonal to the subspace spanned by
the endmembers already determined. The new endmember signature corresponds to the
extreme of the projection. The algorithm iterates until all endmembers are exhausted. VCA
performs much better than PPI and better than or comparable to N-FINDR; yet it has a
computational complexity between one and two orders of magnitude lower than N-FINDR.

The chapter is structured as follows. Section 7.2 describes the fundamentals of the
proposed method. Section 7.3 and Section 7.4 evaluate the proposed algorithm using
simulated and real data, respectively. Section 7.5 presents some concluding remarks.

7.2 Vertex Component Analysis Algorithm

Assuming the linear mixing scenario, each observed spectral vector is given by

r=x-+n
=M ya +n, (7.1)
-

S

where r is an L-vector (L is the number of bands), M=[m;, my,..., m,] is the mixing
matrix (m; denotes the ith endmember signature and p is the number of endmembers
present in the covered area), s =ya (7 is a scale factor modeling illumination variability
due to surface topography), @ =[ay, a,,..., a,]" is the vector containing the abundance
fraction of each endmember (the notation (-)" stands for vector transposed), and n models
system additive noise.
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(a) 2D scatterplot of mixtures of the three endmembers shown in Figure 7.2; circles denote pure materials.
(b) Reflectances of Carnallite, Ammonioalunite, and Biotite. (© 2005 IEEE. With permission.)

Owing to physical constraints [20], abundance fractions are non-negative (> 0) and
satisfy the so-called positivity constraint 17 @ =1, where 1 is a p x 1 vector of ones. Each
pixel can be viewed as a vector in an L-dimensional Euclidean space, where each channel
is assigned to one axis of space. Since the set {a € R” : 1"a =1, & > 0} is a simplex, the set
S.={xerl:x=Ma,1Ta=1, a >0} is also a simplex. However, even assuming n =0, the
observed vector set belongs to C,={r € RE:r=Mya, 1" =1, >0, y>0} that is a
convex cone, owing to scale factor y. For illustration purposes, a simulated scene was
generated according to the expression in Equation 7.1. Figure 7.1a illustrates a simplex
and a cone, projected on a 2D subspace, defined by a mixture of three endmembers. These
spectral signatures (AM Biotite, BM Carnallite, and CM Ammonioalunite) were selected
from the U.S. Geological Survey (USGS) digital spectral library [50]. The simplex bound-
ary is a triangle whose vertices correspond to these endmembers shown in Figure 7.1b.
Small and medium dots are simulated mixed spectra belonging to the simplex S, (y=1)
and to the cone C, (y ) 0), respectively.

The projective projection of the convex cone C, onto a properly chosen hyperplane is a
simplex with vertices corresponding to the vertices of the simplex S,. This is illustrated
in Figure 7.2. The simplex S, ={y € " y=r1/(x" u), r € C,} is the projective projection of
the convex cone C, onto the plane r'u=1, where the choice of u assures that there is no
observed vectors orthogonal to it.

After identifying S,, the VCA algorithm iteratively projects data onto a direction
orthogonal to the subspace spanned by the endmembers already determined. The new
endmember signature corresponds to the extreme of the projection. Figure 7.2 illustrates
the two iterations of VCA algorithm applied to the simplex S, defined by the mixture of
two endmembers. In the first iteration, data is projected onto the first direction f;. The
extreme of the projection corresponds to endmember m,. In the next iteration, endmem-
ber m,; is found by projecting data onto direction f,, which is orthogonal to m,. The
algorithm iterates until the number of endmembers is exhausted.

7.2.1 Subspace Estimation

As mentioned before each spectral vector, also called pixel, of a hyperspectral image can
be represented as a vector in the space ®". Under the linear mixing scenario, those
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Convex cone C, (y#1)

a 7/
+ Simplex S, (y=1)

f1\ . , / €
o7 FIGURE 7.2
f;l'ma\/ . Ilustration of the VCA algorithm. (© 2005 IEEE. With
N permission.)

spectral vectors are a linear combination of a few vectors, the so-called endmember
signatures. Therefore, the dimensionality of data (number of endmembers) is usually
much lower than the number of bands, that is, those pixels are in a subspace of dimension
p. If p < L, it is worthy to project the observed spectral vectors onto the subspace signal.
This leads to significant savings in computational complexity and to SNR improvements.

Principal component analysis (PCA) [51], maximum noise fraction (MNF) [52], and
singular value decomposition (SVD) [49] are three well-known projection techniques
widely used in remote sensing. PCA, also known as Karhunen-Loéve transform, seeks
the projection that best represents data in a least-square sense; MNF or noise adjusted
principal components (NAPC) [53] seeks the projection that optimizes SNR; and SVD
provides the projection that best represents data in the maximum power sense. PCA and
MNF are equal in the case of white noise. SVD and PCA are also equal in the case of zero-
mean data.

A key problem in dimensionality reduction of hyperspectral data is the determination of
the number of endmembers present in the data set. Recently, Harsanyi, Farrand, and
Chang developed a Neyman-Pearson detection theory-based thresholding method
(HFC), to determine the number of spectral endmembers in hyperspectral data (referred
in Ref. [18] as virtual dimensionality—VD). HFC method uses the eigenvalues to measure
signal [54]. A modified version of this method, energy in a detection frame work called
noise-whitened HFC (NWHEFC), includes a noise-whitening process as a preprocessing
step to remove the second-order statistical correlation [18]. In the NWHFC method a noise
estimation is required.

By specifying the false alarm probability, Ps, a Neyman-Pearson detector is derived to
determine whether or not a distinct signature is present in each of spectral bands. The
number of times the Neyman—Pearson detector fails the test is exactly the number of
endmembers assumed to be present in the data.

A new mean-squared error-based approach is next presented to determine the signal
subspace in hyperspectral imagery [47,48]. The method firstly estimates the signal and
noise correlations matrices, then it selects the subset of eigenvalues that best represents
the signal subspace in the least-square sense.

7.2.1.1 Subspace Estimation Method Description

Let R=[ry, 1p,...,ry] be an L x N matrix of spectral vectors, one per pixel, where N is the
number of pixels and L is the number of bands. Assuming a linear mixing scenario, each
observed spectral vector is given by Equation 7.1.
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The correlation matrix of vector r is K, =K, + K,, where K,=MK; M" is the signal
correlation matrix, K,, is the noise correlation matrix, and K, is the abundance correlation
matrix. An estimate of the signal correlation matrix is given by

K, =K, - K,, (7.2)

where K, = RRT/N is the sample correlation matrix of R, and K, is an estimate of noise
correlation matrix.

Define Ri:([R]f,:)T, where symbol [R];. stands for the ith row of R, that is, R’ is the
transpose of the ith line of matrix R, thus containing the data read by the hyperspectral
sensor at the ith band for all image pixels. Define also the matrix R%=[R},..., R},
R ... RY.

Assummg that the dimension of the signal subspace is much lower than the number of
bands, the noise correlation matrix K,, can be inferred based on multiple regression theory
[55]. This consists in assuming that

Ri = RHXBZ + 81', (7.3)

where R? is the explanatory data matrix, B;=[By,..., Br_ 11T is the regression vector, and
sl are modehng errors. For each i € {1,..., L}, the regressmn vector is given by Bi= [R‘)]
’, where (-)* denotes pseudo-inverse matrlx Finally, we compute & =R’ — R? B; and its
sample correlation matrix K,,.
Let the singular value decomposition (SVD) of K, be

K, = ESE", (7.4)

where E=Jey,..., e €x;1,..., e.] is a matrix with the singular vectors ordered by the
descendent magnitude of the respective singular values. The space ®" can be split into
two orthogonal subspaces: { E; ) spanned by E,=[e;, ..., ] and ( Ef) spanned by Er =
[ex + 1,-.., er], where k is the order of the signal subspace.

Because hyperspectral mixtures have non-negative components, the projection of the
mean value of R onto any eigenvector e;, 1 <i <k, is always nonzero. Therefore, the signal
subspace can be identified by finding the subset of eigenvalues that best represents, in the
least-square sense, the mean value of data set.

The sample mean value of R is

e aMY sy
f=— ) 5=-M) s;+— > n=c+w, (7.5)
N N i=1 N i=1

i=1

where cis in the signal subspace and w ~ N(0, K,,/N) [the notation N(u, C) stands for normal
density function with mean u and covariance CJ. Let ¢, be the projection of ¢ onto ( Ei ). The
estimation of ¢ can be obtained by projecting 7 onto the signal subspace ( E ), i.e., ¢ = U7,
where U, = E, E,! is the projection matrix onto ( Ey ).
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The first and the second-order moments of the estimated error ¢ — ¢, are
Elc—c¢]=c—E[cs] =c—E[Uyr] =c—Urc=c— ¢, = by, (7.6)

El(c — &)(c — &)"] = byb} + UK, UF /N, (7.7)

where E[-] denotes the expectation operator and the bias by = Ujc is the projection of ¢
onto the space ( Er ). Therefore, the density of the estimated error ¢ — ¢ is N(by, b; by + Uy
K, UL/N).

The mean-squared error between ¢ and ¢ is

mse(k) = E[(c — &) (c — &)]
= tr{E[(c — &)(c — &)}
= by by + tr(UK, UL /N), (7.8)

where tr(-) denotes the trace operator. As we do not know the bias by, an app-
roximation of Equation 7.8 can be achieved by usmg the bias estimate b, = Uit. How-
ever, E[ bk] =by and E[ bk bk] =b} by + tr(Ur K,, Up /N) that is, an unbiased estimate of
bib; is bk bk — tr(Ut KUt / N). The criteria for the signal subspace order determination
are then

k = arg min (b]'by, + tr(U,K, U] /N) — tr(U}FK, U /N))
= arg min UL ULE + 2tr(UiK,, /N) — tr(K,,/N))

= argmin (F Ut + 2tr(UK, /N)), (7.9)

where we have used U=U" and U?=U for any projection matrix.

Each term of Equation 7.9 has a clear meaning: the first accounts for projection error
power and it is a decreasing function of k; the second accounts for noise power and it is an
increasing function of k.

7.2.1.2 Computer Simulations

In this section we test the proposed method in simulated scenes. The spectral signatures
are selected from the USGS digital spectral library. Abundance fractions are generated
according to a Dirichlet distribution given by

Dlpg +pp 4+ mp) g 0
al az ..
)l (k) - - - Tuy)

plet, @y, ..., ay) = T (7.10)

where 0 < a; <1, Y ¥_; @;=1, and I'(-) denotes the Gamma function. The mean value of
the ith endmember fraction «; is E [a;] =i/ > k-1 k-

The results next presented are organized into two experiments: in the first experiment
the method is evaluated with respect to the SNR and to the number of endmembers p. We
define SNR as

SNR = 10log,, SEXTX]] (7.11)
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In the second experiment, the method is evaluated when a subset of the endmembers are
present only in a few pixels of the scene.

In the first experiment, the hyperspectral scene has 10* pixels and the number of
endmembers vary from 3 to 21. The abundance fractions are Dirichlet distributed with
mean value u;=1/p, fori=1,..., p.

Figure 7.3 shows the evolution of the mean-squared error, that is, of FU T2t
(Uk K,,/N) as a function of the parameter k, for SNR=35 dB and p=>5. The minimum of
the mean-squared error occurs for k=5, which is exactly the number of endmembers
present in the image.

Table 7.1 presents the signal subspace order estimate as a function of the SNR and of p.
In this table we compare the proposed method and the VD, recently proposed in Ref. [18].
The VD was estimated by the NWHFC-based eigen-thresholding method using the
Neyman-Pearson test with the false-alarm probability set to Py=10"*. The proposed
method finds the correct ID for SNR larger than 25 dB, and underestimates number of
endmembers as the SNR decreases. In comparison with the NWHFC algorithm, the
proposed approach yields systematically equal or better results.

In the second experiment SNR=35 dB and p=8. The first five endmembers have a
Dirichlet distribution as in the previous experiment and Figure 7.4 shows the mean-
squared error versus k, when p=8. The minimum of mse(k) is achieved for k=8. This
means that the method is able to detect rare endmembers in the image. However, this
ability degrades as SNR decreases, as expected.

TABLE 7.1

Signal Subspace Dimension k as a Function of SNR and of p (Bold: Proposed method; In Brackets:
VD Estimation with NWHFC Method and Py = 1074

Method New (VD) New (VD) New (VD) New (VD) New (VD)
SNR 50 dB 35dB 25 dB 15 dB 5dB
p=3 31 3 30) 3 32
p=>5 5 (5) 5(5) 5(5) 5(3) 4(2)
p =10 10 (10) 10 (10) 10 (8) 8 (5) 6(2)
p=15 15 (15) 15 (15) 13 (12) 9(9) 5(2)
p =21 21 (21) 21 (19) 14 (12) 10 (6) 5(1)
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7.2.2 Dimensionality Reduction

As discussed before, in the absence of noise, observed vectors r lie in a convex cone C,
contained in a subspace ( E, ) of dimension p. The VCA algorithm starts by identifying
( E, ) and then projects points in C, onto a simplex S, by computing y=r/(r" u) (see
Figure 7.2). This simplex is contained in an affine set of dimension p — 1. We note that the
rational underlying the VCA algorithm is still valid if the observed data set is projected
onto any subspace ( E;) D ( E, ) of dimension d, for p < d < L; that is, the projection of the
cone C, onto ( E; ) followed by a projective projection is also a simplex with the same
vertices. Of course, the SNR decreases as d increases.

To illustrate the point above-mentioned, a simulated scene was generated according
to the expression in Equation 7.1 with three spectral signatures (A, Biotite; B, Carnal-
lite; and C, Ammonioalunite) (see Figure 7.1b). The abundance fractions follow a
Dirichlet distribution, parameter vy is set to 1, and the noise is zero-mean white
Gaussian with covariance matrix ¢?I, where I is the identity matrix and o=0.045,
leading to an SNR =20 dB. Figure 7.5a presents a scatterplot of the simulated spectral
mixtures without projection (bands A =827 nm and A=1780 nm). Two triangles
whose vertices represent the true endmembers (solid line) and the estimated end-
members (dashed line) by the VCA algorithm are also plotted. Figure 7.5b presents a
scatterplot (same bands) of projected data onto the estimated affine set of dimension
2 inferred by SVD. Noise is clearly reduced, leading to a visible improvement on the
VCA results.

As referred before, we apply the rescaling r/(r" u) to get rid of the topographic
modulation factor. As the SNR decreases, this rescaling amplifies noise and is preferable
to identify directly the affine space of dimension p — 1 by using only PCA. This phenom-
enon is illustrated in Figure 7.6, where data clouds (noiseless and noisy) generated by two
signatures are shown. Affine spaces (A,_; ) and ( A,_; ) identified by PCA of dimension
p — 1 and SVD of dimension p, respectively, followed by projective projection are
schematized by straight lines. In the absence of noise, the direction of m, is better
identified by projective projection onto ( A,_1 ) (71, better than 7i,); in the presence of
strong noise, the direction of m, is better identified by orthogonal projection onto ( A,_1 )
(1, better than 171,). As a conclusion, when the SNR is higher than a given threshold SNRy,,
data is projected onto ( E, ) followed by the rescaling r/ (r" u); otherwise data is projected
onto ( A,_; ). Based on experimental results, we propose the threshold SNRy, =15 + 10
logip (p) dB. Since for zero-mean white noise SNR = E[x" x]/(Lo?), we conclude that at
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Scatterplot (bands A =827 nm and A =1780 nm) of the three endmembers mixture. (a) Unprojected data. (b)
Projected data using SVD. Solid and dashed lines represent simplexes computed from original and estimated
endmembers (using VCA), respectively. (© 2005 IEEE. With permission.)

SNRy,, E[x'x]/(po®) = 10" L; that is, the SNRy, corresponds to the fixed value L x 10" of
the SNR measured with respect to the signal subspace.

7.2.3 VCA Algorithm

The pseudo-code for the VCA method is shown in Algorithm 1. Symbols [M] and [M] ik
stand for the jth column of M and for the ith to k th columns of M, respectlvely Symbol
M stands for the estimated mixing matrix.

A’_1 (SVDy, + projective. proj.)

FIGURE 7.6 €
Ilustration of the noise effect on the Noiseless Ap_1 (PCA,_y) Noisy
dimensionality reduction. (© 2005 data cloud data cloud

IEEE. With permission.) (r=x) (r=x+n)
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Algorithm 1: Vertex Component Analysis (VCA)
INPUT: p, R=1[ry, 15, ..., 1n]

1: p : = argminy (" Ut £+ 2 tr(Uy K,,/N)); U obtained by SVD, and K, estimated
by multiple regression
2: SNRm, =15 + 10 logyo (p) dB
3:if SNR > SNRy, then
4:d:=p;
5: X :=U{J R; Uy obtained by SVD
6: u:=mean (X); uis a1l xd vector

7: YL, - =[X].,/ ([X]:,jT u); projective projection

8: else
9:d:=p—1,
10: [X].; =UJt ([R].; —7); {Uq obtained by PCA}
11: k:=arg maxj—q1.. . || [X]; [; k : =[x | & |...|&];
12: kis a 1 x N vector
13:Y:= X],’
K
14: end if

15: A:=[g, |0 |- 0]; {e,:=[0,...,01]" and Ais a p x p auxiliary matrix}
16: fori:=1top do
17: w : =randn (0, I,)); {wis a zero-mean random Gaussian vector of covariance I,}.
18: f: = %; {f is a vector orthonormal to the subspace spanned by [A]. 1.;.}
19:v:=f'Y;
20: k : =arg max;_1
21: [AL; : =[Y].x
22: [indice]; : =k; {stores the pixel index]}
23: end for
24: if SNR ) SNRy, then
25: M : = UalX]. indice; {/I\Z is a L x p estimated mixing matrix}
26: else
27: M: = UalX]. indice +F; {K/[\ is a L x p estimated mixing matrix}
28: end if

~ [[V].;|; {find the projection extreme}

.....

Step 3: Test if the SNR is higher than SNRy, to decide whether the data is to be projected
onto a subspace of dimension p or p — 1. In the first case the projection matrix Ugq is
obtained by SVD from RR"/N. In the second case the projection is obtained by PCA from
(R—F)(R—F)"/N; recall that ¥ is the sample mean of [R].;, fori=1,..., N.

Step 5 and Step 10: Assure that the inner product between any vector [X].; and vector u is
non-negative—a crucial condition for the VCA algorithm to work correctly. The chosen
value of k =argmax;_1...5 [|[X].j|| assures that the colatitude angle between u and any
vector [X]. ; is between 0° and 45°, avoiding numerical errors that otherwise would occur
for angles near 90°.

Step 15: Initializes the auxiliary matrix A, which stores the projection of the estimated
endmembers signatures. Assume that there exists at least one pure pixel of each
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endmember in the input sample R (see Figure 7.2). Each time the loop for is executed, a
vector f orthonormal to the space spanned by the columns of the auxiliary matrix A is
randomly generated and y is projected onto f. Because we assume that pure endmembers
occupy the vertices of a simplex, a < T [Y].; <D, fori=1,..., N, where values a and b
correspond to only pure pixels. We store the endmember signature corresponding to
max(|a|,|b|). The next time loop for is executed, f is orthogonal to the space spanned by
the signatures already determined. Since f is the projection of a zero-mean Gaussian
independent random vector onto the orthogonal space spanned by the columns of [A]. 1.,
then the probability of f being null is zero. Notice that the underlying reason for generating
arandom vector is only to get a non-null projection onto the orthogonal space generated by
the columns of A. Figure 7.2 shows the input samples and the chosen pixels, after the
projection v=f" Y. Then a second vector f orthonormal to the endmember a is generated
and the second endmember is stored. Finally, Step 25 and Step 27 compute the columns of
matrix M, which contain the estimated endmembers signatures in the L-dimensional space.

7.3 Evaluation of the VCA Algorithm

In this section, we compare VCA, PPI, and N-FINDR algorithms. N-FINDR and PPI were
coded according to Refs. [40] and [35], respectively. Regarding PPI, the number of skewers
must be large [41,42,56-58]. On the basis of Monte Carlo runs, we concluded that the
minimum number of skewers beyond which there is no unmixing improvements is about
1000. All experiments are based on simulated scenes from which we know the number of
endmembers, their signatures, and their abundance fractions. Estimated endmembers are
the columns of M= [my, my,..., m 1,]. We also compare estimated abundance fractions
given by S=M"[r}, 12,..., 1], (M stands for pseudo-inverse of M) with the true
abundance fractions.

To evaluate the performance of the three algorithms, we compute vectors of angles

0=1[01, 02,...,0,]" and ¢ =[1, ¢, ..., ¢,]" with'

9; = <arccos<mi'ﬁti>> (7.12)
[ ||| e |
< [S1;,.IS];,
L= — T T 713
¢ <arc “*is1,. 181, ) 719

where 6; is the angle between vectors m; and m; (ith endmember signature estimate) and
¢: is the angle between vectors [S];. and [S]z (vectors of ®Y formed by the ith lines of
matrices S and S = [s1, 82, ..., sn], respectively).

Based on 6 and ¢, we estimate the following root mean square error distances

12

= (SE[I008]) 7.14)
1/2

£y = <%E[II¢II§D : (7.15)

The first quantity measures distances between m; and m,, for i=1,..., p; the second is
similar to the first, but for the estimated abundance fractions. Here we name &4 and ¢, as

"Notation (x,y) stands for the inner product x"y.
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rmsSAE and rmsFAAE, respectively (SAE stands for signature angle error and FAAE
stands for fractional abundance angle error). Mean values in Equation 7.14 and Equation
7.15 are approximated by sample means based on one hundred Monte Carlo runs.

In all experiments, the spectral signatures are selected from the USGS digital spectral
library (Figure 7.1b shows three of these endmember signatures). Abundance fractions
are generated according to a Dirichlet distribution given by Equation 7.10. Parameter vy is
Beta (B4, B») distributed, that is,

:F(B1 +B2) g1 _1)pt
p(y) AN (y—=1"7,

which is also a Dirichlet distribution*. The Dirichlet density, besides enforcing positivity
and full additivity constraints, displays a wide range of shapes depending on the param-
eters w1y, ..., m;. This flexibility influences its choice in our simulations.

The results presented next are organized into five experiments: in the first experiment,
the algorithms are evaluated with respect to the SNR and to the absence of pure pixels. As
mentioned before, we define

E[x"x]

SNR = 1010g10 m

(7.16)

In the case of zero-mean noise with covariance o-*I and Dirichlet abundance fractions, one
obtains

tr[MK,M"]
where
T .
K = c?Elaa’] = 02 ——F + diag(p) (7.18)

Y ( Z?:l Mi)(l + Zf:1 M’i) ’

r=[p-- MP]T, and 05 is the variance of parameter y. For example, assuming abundance

fractions equally distributed, we have, after some algebra, SNR =~ 10 logyy o> >/ =1
P

p P
(Z m,-f/p) /(Lo®) for up < 1 and SNR ~ 10 log;o o5 (Z( 3 mi]-)z/pz) /(Lo?) for wp > 1.

=1 i=1 j=1

]In the second experiment, the performance is measured ]as function of the parameter v,
which models fluctuations on the illumination due to surface topography. In the third
experiment, to illustrate the algorithm performance, the number of pixels of the scene
varies with the size of the covered area—as the number of pixels increases, the likelihood
of having pure pixels also increases, improving the performance of the unmixing algo-
rithms. In the fourth experiment, the algorithms are evaluated as a function of the number
of endmembers present in the scene. Finally, in the fifth experiment, the number of
floating point operations (flops) is measured, to compare the computational complexity
of the VCA, N-FINDR, and the PPI algorithms.

In the first experiment, the hyperspectral scene has 1000 pixels and the abundance
fractions are Dirichlet distributed with u;=1/3, for i=1,2,3; parameter v is Beta-distrib-
uted with 8, =20 and 8, =1 implying E[y] =0.952 and o, = 0.05.

Figure 7.7 shows performance results as a function of the SNR. As expected, the
presence of noise degrades the performance of all algorithms. In terms of rmsSAE and
rmsFAAE (Figure 7.7a and Figure 7.7b), we can see that when SNR is less than 20 dB

*With one component.
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First scenario: (N=1000, p =3, L=224, p1 = po=p3=1/3, B1=20, B, =1): (a) rmsSAE as function of SNR; (b)
rmsFAAE as function of SNR. (© 2005 IEEE. With permission.)

the VCA algorithm exhibits the best performance. Note that for noiseless scenes, only the
VCA algorithm has zero rmsSAE. PPI algorithm displays the worst result.

Figure 7.8 shows performance results as a function of the SNR in the absence of pure
pixels. Spectral data without pure pixels was obtained by rejecting pixels with any
abundance fraction smaller than 0.2. Figure 7.9 shows the scatterplot obtained. VCA
and N-FINDR display similar results, and both are better than PPI. Notice that the
performance is almost independent of the SNR and is uniformly worse than that dis-
played with pure pixels and SNR=5 dB in the first experiment. We conclude that this
family of algorithms is more affected by the lack of pure pixels than by low SNR.

For economy of space and also because rmsSAE and rmsFAAE disclose similar pattern
of behavior, we only present the rmsSAE in the remaining experiments.

In the second experiment, abundance fractions are generated as in the first one, SNR is
set to 20 dB, and parameter vy is Beta-distributed with 8, =2, ...,28. This corresponds to
the variation of E[y] from 0.66 to 0.96 and o, from 0.23 to 0.03. By varying parameter 31,
the severity of topographic modulation is also varied. Figure 7.10 illustrates the effect of
topographic modulation on the performance of the three algorithms. When 8, grows (o,

(a) (b)
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—— VCA —voa
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5 10!
- % 20 10 % 30 20 10
SNR (dB) SNA (dB)
FIGURE 7.8

Robustness to the absence of pure pixels (N =1000, p =3, L =224, puy = pup = u3 =1/3, 81 =20, B, =1): (a) rmsSAE as
function of SNR; (b) rmsFAAE as function of SNR. (© 2005 IEEE. With permission.)
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0 02 04 06 038 1 A =1780 nm), with abundance fraction smaller than 0.2 rejected. (©
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gets smaller) the performance improves. This is expected because the simplex identifica-
tion is more accurate when the topographic modulation is smaller. The PPI algorithm
displays the worst performance for o, ( 0.1. VCA and N-FINDR algorithms have identical
performances when 3, takes higher values (o, ( 0.045); otherwise VCA algorithm has the
best performance. VCA is more robust to topographic modulation because it seeks for the
extreme projections of the simplex, whereas N-FINDR seeks for the maximum volume,
which is more sensitive to fluctuations on 7.

In the third experiment, the number of pixels is varied, the abundance fractions are
generated as in the first one, and SNR =20 dB. Figure 7.11 shows that VCA and N-FINDR
exhibit identical results, whereas the PPI algorithm displays the worst result. Note that the
behavior of the three algorithms is quasi-independent of the number of pixels.

In the fourth experiment, we vary the number of signatures from p=3 to p=21, the
scene has 1000 pixels, and SNR=30 dB. Figure 7.12a shows that VCA and N-FINDR
performances are comparable, whereas PPI displays the worst result. The rmsSAE in-
crease slightly as the number of endmembers present in the scene increases. The rmsSAE
is also plotted as a function of the SNR with p=10 (see Figure 7.12b). Comparing with
Figure 7.7a we conclude that when the number of endmembers increases, the perform-
ance of the algorithms slightly decreases.

In the fifth and last experiment, the number of flops is measured to compare the
computational complexity of VCA, PPI, and N-FINDR algorithms. Here we use the scen-
arios of the second and third experiments. Table 7.2 presents approximated expressions for

rmsSAE

25

1 —— VCA
) --e-- NFINDR
A o PPI

&, (degrees)

FIGURE 7.10

Robustness to the topographic modulation (N = 1000,
---- p=3,L=224, u=pr=ps=1/3, SNR=20dB, B, =1),
0.04 0.08 rmsSEA as function of the (Tyz (variance of 7). (© 2005
IEEE. With permission.)
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the number of flops used by each algorithm. These expressions neither account for the
computational complexities involved in the computations of the sample covariance (R — 1)
(R —7)"/N nor in the computations of the eigen decomposition. The reason is that these
operations, compared with the VCA, PPI, and N-FINDR algorithms, have a negligible
computational cost since:

e The computation of (R — ¥)(R — 7)'/Nhas a complexity of 2NL? flops. However,
in practice one does not need to use the complete set of N hyperspectral vectors.
If the scene is noiseless, only p — 1 linearly independent vectors would be enough
to infer the exact subspace ( E, _ 1 ). In the presence of noise, however, a larger set
should be used. For example in a 1000 x 1000 hyperspectral image, we found out
that only 1000 samples randomly sampled are enough to find a very good
estimate of (E,_;). Even a sample size of 100 leads to good results in this
respect.

Concerning the eigen decomposition of (R —#)(R — )" /N (or the SVD of RR"/N),

we only need to compute p — 1 (or p) eigenvectors corresponding to the largest
p — 1 eigenvalues (or p single values). For these partial eigen decompositions, we

(@) (b)
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FIGURE 7.12

Impact of the number of endmembers (N =1000, L =224, p; =pu, =p3=1/3, SNR=30dB, B,=20, B> = 1), (a)
rmsSEA as function of the number of endmembers; (b) rmsSEA function of the SNR with p=10. (© 2005 IEEE.
With permission.)
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TABLE 7.2

Computational Complexity of VCA,
N-FINDR, and PPI Algorithms

Algorithm Complexity (flops)
VCA 2p°N

N-FINDR PN

PPI 2psN

Source: © 2005 IEEE. With permission.

have used the PCA algorithm [51] (or SVD analysis [49]) whose complexity is
negligible compared with the remaining operations.

The VCA algorithm projects all data (N vectors of size p) onto p orthogonal directions.
N-FINDR computes pN times the determinant of a p x p matrix, whose complexity is p”,
with 2.3 ( 9 (2.9 [59]. Assuming that N > p ) 2, VCA complexity is lower than that of
N-FINDR. With regard to PP, given that the number of skewers (s) is much higher than the
usual number of endmembers, the PPI complexity is much higher than that of VCA.
Hence, we conclude that the VCA algorithm has always the lowest complexity.

Figure 7.13 plots the flops for the three algorithms after data projection. In Figure 7.13a
the abscissa is the number of endmembers in the scene, whereas in Figure 7.13b the
abscissa is the number of pixels. Note that for five endmembers, VCA computational
complexity is one order of magnitude lower than that of the N-FINDR algorithm. When
the number of endmembers is higher than 15, the VCA computational complexity is, at
least, two orders of magnitude lower than PPI and N-FINDR algorithms.

In the introduction, besides PPI and N-FINDR algorithms, we have also mentioned
ORASIS. Nevertheless, no comparison whatsoever was made with this method. The
reason is that there are no ORASIS implementation details published in the literature.
We can, however, make a few considerations based on the results recently published in
Ref. [58]. This work compares, among others, PPI, N-FINDR, and ORASIS algorithms.
Although the relative performance of the three algorithms varies, depending on SNR,
number of endmembers, spectral signatures, type of atmospheric correction, and so on,

(a) (b)
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10 10
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108 -e- NFINDR [ .- - 108 -<- NFINDR ™
0107 w 107
8 g
106 t- 108
10° 10°
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Number of sources Number of pixels
FIGURE 7.13

Computational complexity measured in the number of flops.
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both PPI and N-FINDR generally perform better than ORASIS when SNR is low. Since in
all comparisons conducted here the VCA performs better than or equal to PPI and
N-FINDR, we expect that the proposed method performs better than or equal to ORASIS
when low SNR dominates the data, although further experiments would be required to
demonstrate the above remark.

7.4 Evaluation with Experimental Data

In this section, we apply the VCA algorithm to real hyperspectral data collected by the
AVIRIS [5] sensor over Cuprite, Nevada. Cuprite is a mining area in southern Nevada
with mineral and little vegetation [60], located approximately 200 km northwest of Las
Vegas. The test site is a relatively undisturbed acid-sulphate hydrothermal system near
highway 95. The geology and alteration were previously mapped in detail [61,62]. A
geologic summary and a mineral map can be found in Refs. [60,63]. This site has been
used extensively for remote sensing experiments over the past years [64,65].

Our study is based on a subimage (250 x 190 pixels and 224 bands) of a data set
acquired on the AVIRIS flight 19 June 1997 (see Figure 7.14a). The AVIRIS instrument
covers the spectral region from 0.41 to 2.45 pm in 224 bands with 10 nm bands. Flying at
an altitude of 20 km, the AVIRIS flight has an instantaneous field of view (IFOV) of 20 m
and views a swath over 10 km wide. To compare results with a signature library, we
process the reflectance image after atmospheric correction.

The proposed method to estimate the number of endmembers when applied to this
data set estimates k=23 (see Figure 7.15b). According to the truth data presented in Ref.
[60], there are eight materials in this area. This difference is due to (1) the presence of rare
pixels not accounted for in the truth data [60] and (2) spectral variability.

The bulk of spectral energy is explained with only a few eigenvectors. This can be
observed from Figure 7.15a where the accumulated signal energy is plotted as a func-
tion of the eigenvalue index. The energy contained in the first eight eigenvalues is
99.94% of the total signal energy. This is further confirmed in Figure 7.14b where we
show, in gray level and for each pixel, the percentage of energy contained in the subspace
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FIGURE 7.14

(a) Band 30 (wavelength A =667.3 nm) of the subimage of AVIRIS Cuprite Nevada data set; (b) percentage of
energy in the subspace Eg.o3.
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(a) Percentage of signal energy as a function of the number of eigenvalues; (b) mean-squared error versus k for
cuprite data set.

( Eg3 )=1{[eo, ..., 3] ). Notice that only a few (rare) pixels contain energy in ( Eq.»3 ).
Furthermore, these energies are a very small percentage of the corresponding spectral
vector energies (less than 0.16%) in this subspace.

The VD estimated by the HFC-based eigen-thresholding method [18] (Ps=10"°) on the
same data set yields k=20. A lower value of Pr would lead to a lower number of
endmembers. This result seems to indicate that the proposed method performs better
than the HFC with respect to rare materials.

To determine the type of projection applied by VCA, we compute

Pr, — (p/L)Pr

SNR ~ 10log;, R —
.

(7.19)

where P =E[r! 1] and PRp =E[r" U; U," 1] in the case of SVD and PRp =E[r" U, U; 1] +
'7 in the case of PCA.

A visual comparison between VCA results on the Cuprite data set and the ground truth
presented in Ref. [63] shows that the first component (see Figure 7.16a) is predominantly
Alunite, the second component (see Figure 7.16b) is Sphene, the third component
(see Figure 7.16c) is Buddingtonite, and the fourth component (see Figure 7.16d)
is Montmorillonite. The fifth, seventh, and the eighth components (see Figure 7.16e, Figure
7.16g, and Figure 7.16h) are Kaolinite and the sixth component (see Figure 7.16f) is
predominantly Nontronite.

To confirm the classification based on the estimated abundance fractions, a comparison
of the estimated VCA endmember signatures with laboratory spectra [53] is presented in
Figure 7.17. The signatures provided by VCA are scaled by a factor to minimize the mean
square error between them and the respective library spectra. The estimated signatures
are close to the laboratory spectra. The larger mismatches occur for buddingtonite and
kaolinite (#1) signatures, but only on a small percentage of the total bands.

Table 7.3 compares the spectral angles between extracted endmembers and labora-
tory reflectances for the VCA, N-FINDR, and the PPI algorithms. The first column
shows the laboratory substances with smaller spectral angle distance with respect to
the signature extracted by VCA algorithm; the second column shows the respective
angles. The third and the fourth columns are similar to the second one, except when
the closest spectral substance is different from the corresponding VCA one. In these
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© ()

FIGURE 7.16
Eight abundance fractions estimated with VCA algorithm: (a) Alunite or Montmorillonite; (b) Sphene; (c)
Buddingtonite; (d) Montmorillonite; (e) Kaolinite #1; (f) Nontronite or Kaolinite; (g) Kaolinite #2; (h) Kaolinite #3;

cases, we write the name of the substance. The displayed results follow the pattern of
behavior shown in the simulations, where VCA performs better than PPI and better or
similar to N-FINDR.

7.5 Conclusions

We have presented a new algorithm to unmix linear mixtures of hyperspectral sources,
termed vertex component analysis. The VCA algorithm is unsupervised and is based
on the geometry of convex sets. It exploits the fact that endmembers occupy the vertices
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Comparison of the extracted signatures (dotted line) with the USGS spectral library (solid line): (a) Alunite or
Montmorillonite; (b) Sphene; (c) Buddingtonite; (d) Montmorillonite; (e) Kaolinite #1; (f) Nontronite or Kaolinite;

(g) Kaolinite #2; (h) Kaolinite #3;
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TABLE 7.3

Spectral Angle Distance between Extracted Endmembers and Laboratory Reflectances
for VCA, N-FINDR, and PPI Algorithms

Substance VCA N-FINDR PPI

Alunite or montmorillonite 3.9 3.9 4.3
Sphene 3.1 Barite (2.7) Pyrope (3.9)
Buddingtonite 4.2 41 3.9
Montmorillonite 3.1 3.0 2.9
Kaolinite #1 5.7 5.3 Dumortierite (5.3)
Nontronite or kaolinite 34 4.8 4.7
Kaolinite #2 35 Montmor. (4.2) 35
Kaolinite #3 4.2 43 5.0

of a simplex. This algorithm also estimates the dimensionality of hyperspectral linear
mixtures.

To determine the signal subspace in hyperspectral data set the proposed method first
estimates the signal and noise correlations matrices, and then it selects the subset of
eigenvalues that best represents the signal subspace in the least-square sense. A compari-
son with HFC and NWHFC methods is conducted yielding comparable or better results
than these methods.

The VCA algorithm assumes the presence of pure pixels in the data and iteratively
projects data onto a direction orthogonal to the subspace spanned by the endmembers
already determined. The new endmember signature corresponds to the extreme of the
projection. The algorithm iterates until the number of endmembers is exhausted.

A comparison of VCA with PPI [35] and N-FINDR [40] algorithms is conducted.
Several experiments with simulated data lead to the conclusion that VCA performs
better than PPI and better than or similar to N-FINDR. However, VCA has the lowest
computational complexity among these three algorithms. Savings in computational
complexity ranges between one and two orders of magnitude. This conclusion has
great impact when the data set has a large number of pixels. VCA was also applied to
real hyperspectral data. The results achieved show that VCA is an effective tool to
unmix hyperspectral data.
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8.1 Part1: Subspace Approach of Speckle Reduction in SAR Images Using
ICA

8.1.1 Introduction

The use of synthetic aperture radar (SAR) can provide images with good details under
many environmental conditions. However, the main disadvantage of SAR imagery is the
poor quality of images, which are degraded by multiplicative speckle noise. SAR image
speckle noise appears to be randomly granular and results from phase variations of
radar waves from unit reflectors within a resolution cell. Its existence is undesirable
because it degrades quality of the image and affects the task of human interpretation
and evaluation. Thus, speckle removal is a key preprocessing step for automatic inter-
pretation of SAR images. A subspace method using independent component analysis
(ICA) for speckle reduction is presented here.
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8.1.2 Review of Speckle Reduction Techniques in SAR Images

Many adaptive filters for speckle reduction have been proposed in the past. Earlier
approaches include Frost filter, Lee filter, Kuan filter, etc. The Frost filter was designed as
an adaptive Wiener filter based on the assumption that the scene reflectivity is an autore-
gressive (AR) exponential model [1]. The Lee filter is a linear approximation filter based on
the minimum mean-square error (MMSE) criterion [2]. The Kuan filter is the generalized
case of the Lee filter. It is an MMSE linear filter based on the multiplicative speckle model
and is optimal when both the scene and the detected intensities are Gaussian distributed [3].

Recently, there has been considerable interest in using the ICA as an effective tool for
signal blind separation and deconvolution. In the field of image processing, ICA has strong
adaptability for representing different kinds of images and is very suitable for tasks like
compression and denoising. Since the mid-1990s its applications have been extended
to more practical fields, such as signal and image denoising and pattern recognition.
Zhang [4] presented a new ICA algorithm by working directly with high-order statistics
and demonstrated its better performance on SAR image speckle reduction problem.
Malladi [5] developed a speckle filtering technique using Holder regularity analysis of
the Sparse coding. Other approaches [6-8] employ multi-scale and wavelet analysis.

8.1.3 The Subspace Approach to ICA Speckle Reduction

In this approach, we assume that the speckle noise in SAR images comes from a different
signal source, which accompanies but is independent of the “true signal source” (image
details). Thus the speckle removal problem can also be described as “signal source
separation”” problem. The steps taken are illustrated by the nine-channel SAR images
considered in Chapter 2 of the companion volume (Signal Processing for Remote Sensing),
which are reproduced here as shown in Figure 8.1.

8.1.3.1 Estimating ICA Bases from the Image

One of the important problems in ICA is how to estimate the transform from the given
data. It has been shown that the estimation of the ICA data model can be reduced to the
search for uncorrelated directions in which the components are as non-Gaussian as
possible [9]. In addition, we note that ICA usually gives one component (DC component)
representing the local mean image intensity, which is noise-free. Thus we should treat it
separately from the other components in image denoising applications. Therefore, in all
experiments we first subtract the local mean, and then estimate a suitable basis for the rest
of the components.

The original image is first linearly normalized so that it has zero mean and unit variance.
A set of overlapped image windows of 16 x 16 pixels are taken from it and the local mean of
each patch is subtracted. The choice of window size can be critical in this application. For
smaller sizes, the reconstructed separated sources can still be very correlated. To overcome
the difficulties related to the high dimensionality of vectors, their dimensionality has been
reduced to 64 by PCA. (Experiments prove that for SAR images that have few image details,
64 components can make image reconstruction nearly error-free.) The preprocessed data
set is used as the input to FastICA algorithm, using the tanh nonlinearity.

Figure 8.2 shows the estimated basis vectors after convergence of the FastICA algorithm.

8.1.3.2 Basis Image Classification

As alluded earlier, we believe that ““speckle pattern” (speckle noise) in the SAR image
comes from another kind of signal source, which is independent of true signal source;
hence our problem can be considered as signal source separation. However, for the



Two ICA Approaches for SAR Image Enhancement 177

th-I-hv

FIGURE 8.1
The nine-channel polarimetric synthetic aperture radar (POLSAR) images.

image signal separation, we first need to classify the basis images; that is, we denote basis
images that span speckle pattern space by S2 and the basis images that span “true signal”’
space by S1. Then we have S1 4+ 52 = V. The whole signal space that is spanned by all the
basis images is denoted by V. Here, we sample in the main noise regions, which we
denote by P. From the above discussion, S1 and S2 are essentially nonoverlapping or
““orthogonal.”” Then our classification rule is

& ZI; |sj| >T ith component €52
JE

+ z}; |si| <T ith component €S1
IS
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FIGURE 8.2

ICA basis images of the images in Figure 8.1. . . -. .. ..

where T is a selected threshold.

Figure 8.3 shows the classification result.

The processing results of the first five channels are shown in Figure 8.4. We further
calculate the ratio of local standard deviation to mean (SD/mean) for each image and use
it as a criterion for image quality. Both visual quality and performance criterion demon-
strate that our method can remove the speckle noise in SAR images efficiently.

8.1.3.3 Feature Emphasis by Generalized Adaptive Gain

We now apply nonlinear contrast stretching in each component to enhance the image
features. Here, adaptive gain [6] through nonlinear processing, denoted as f(:), is
generalized to incorporate hard thresholding to avoid amplifying noise and remove
small noise perturbations.

" A R
) Y
= el A i

g .--..----
(a) The basis images €S1 (19 compon-
ents). (b) The basis images €52 (45
components).
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Channel C-HH

Channel L-HH Channel L-HV

FIGURE 8.4
Recovered images with our method.

8.1.3.4 Nonlinear Filtering for Each Component

Our nonlinear filtering is simple to realize. For the components that belong to 52, we
simply set them to zero, but we apply our GAG operator to other components that belong
to S1, to enhance the image feature. Then the recovered S;j can be calculated by the
following equation:

. _J0 ith component €52
5= f(si) ith component €S1

Finally the restored image can be obtained after a mixing transform.

A comparison is made with other methods including the Wiener filter, the Lee filter,
and Kuan filter. The result of using Lee filter is shown in Figure 8.5. The ratio comparison
is shown in Table 8.1. The smaller the ratio, the better the image quality. Our method has
the smallest ratios in most cases.



180 Image Processing for Remote Sensing

FIGURE 8.5
Recovered images using Lee filter.

As a concluding remark the subspace approach as presented allows quite a flexibility to
adjust parameters such that significant improvement in speckle reduction with the SAR
images can be achieved.

8.2 Part 2: A Bayesian Approach to ICA of SAR Images
8.2.1 Introduction

We present a PCA-ICA neural network for analyzing the SAR images. With this model,
the correlation between the images is eliminated and the speckle noise is largely reduced
in only the first independent component (IC) image. We have used, as input data for the
ICA parts, only the first principal component (PC) image. The IC images obtained are of
very high quality and better contrasted than the first PC image. However, when the
second and third PC images are also used as input images with the first PC image, the
results are less impressive and the first IC images become less contrasted and more
affected by the noise. This can be justified by the fact that the ICA parts of the models

TABLE 8.1
Ratio Comparison

Original Our Method Wiener Filter Lee Filter Kuan Filter
Channel 1 0.1298 0.1086 0.1273 0.1191 0.1141
Channel 2 0.1009 0.0526 0.0852 0.1133 0.0770
Channel 3 0.1446 0.0938 0.1042 0.1277 0.1016
Channel 4 0.1259 0.0371 0.0531 0.0983 0.0515

Channel 5 0.1263 0.1010 0.0858 0.1933 0.0685
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are essentially based on the principle of the Infomax algorithm for the model proposed in
Ref. [10]. The Informax algorithm, however, is efficient only in the case where the input
data have low additive noise.

The purpose of Part 2 is to propose a Bayesian approach of the ICA method that
performs well for analyzing images and that presents some advantages compared to
the previous model. The Bayesian approach ICA method is based on the so-called
ensemble learning algorithm [11,12]. The purpose is to overcome the disadvantages of
the method proposed in Ref. [10]. Before detailing the present method in Section 8.2.4, we
present in Section 8.2.2 the SAR image model and the statistics to be used later. Section
8.2.3 is devoted to the whitening phase of the proposed method. This step of processing is
based on the so-called simultaneous diagonalization transform for performing the PCA
method of SAR images [13]. Experimental results based on real SAR images shown in
Figure 8.1 are discussed in Section 8.2.5. To prove the effectiveness of the proposed
method, the FastICA-based method [9] is used for comparison. The conclusion for Part 2
is in Section 8.2.6.

8.2.2 Model and Statistics

We adopt the same model used in Ref. [10]. Speckle has the characteristics of a multi-
plicative noise in the sense that its intensity is proportional to the value of the pixel
content and is dependent on the target nature [13]. Let x; be the content of the pixel in the
ith image, s; the noise-free signal response of the target, and #n; the speckle. Then, we have
the following multiplicative model:

Xi = Sin; (81)

By supposing that the speckle has unity mean, standard deviation of ¢;, and is statistically
independent of the observed signal x; [14], the multiplicative model can be rewritten as

xi=s;+si(ni—1) (8.2)

The term s; (n; — 1) represents the zero mean signal-dependent noise and characterizes the
speckle noise variation. Now, let X be the stationary random vector of input SAR images.
The covariance matrix of X, 3, can be written as

EX = Zs + Zn (83)

where 3 and 3, are the covariance matrices of the noise-free signal vector and the signal-
dependent noise vector, respectively. The two matrices, 3 x and 3,,, are used in construct-
ing the linear transformation matrix of the whitening phase of the proposed method.

8.2.3 Whitening Phase

The whitening phase is ensured by the PCA part of the proposed model (Figure 8.6). The
PCA-based part (Figure 8.7) is devoted to the extraction of the PC images. It is based on
the simultaneous diagonalization concept of the two matrices 3x and 3, via one orthog-
onal matrix A. This means that the PC images (vector Y) are uncorrelated and have an
additive noise that has a unit variance. This step of processing allows us to make our
application coherent with the theoretical development of ICA. In fact, the constraint to
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POLSAR images : | PCA part of the model| : PC images | ICA part of the model . ICimages
> using neural networks [ > using ensemble - >
A B
FIGURE 8.6

The proposed PCA-ICA model for SAR image analysis.

have whitening uncorrelated inputs is desirable in ICA algorithms because it simplifies
the computations considerably [11,12]. These inputs are assumed non-Gaussian, centered,
and have unit variance. It is ordinarily assumed that X is zero-mean, which in turn means
that Y is also zero-mean, where the condition of unit variance can be achieved by
standardizing Y. For the non-Gaussianity of Y, it is clear that the speckle, which has
non-Gaussianity properties, is not affected by this step of processing because only the
second-order statistics are used to compute the matrix A.

The criterion for determining A is: “Finding A such as the matrix 3, becomes an
identity matrix and the matrix 3y is transformed, at the same time, to a diagonal matrix.”
This criterion can be formulated in the constrained optimization framework as

Maximize AT xA subject to ATS,A =1 (8.4)

where [ is the identity matrix. Based on the well-developed aspects of the matrix theories
and computations, the existence of A is proved in Ref. [12] and a statistical algorithm for
obtaining it is also proposed. Here, we propose a neuronal implementation of this
algorithm [15] with some modifications (Figure 8.7). It is composed of two PCA neural
networks that have the same topology. The lateral weights ¢/ and ¢}, forming the vectors
C; and C,, respectively, connect all the first m — 1 neurons with the mth one. These
connections play a very important role in the model because they work toward the
orthogonalization of the synaptic vector of the mth neuron with the vectors of the
previous m — 1 neurons. The solid lines denote the weights w}, c} and w?, cjz, respectively,

Wi

Y First PCA neural Second PCA X

network neural network

FIGURE 8.7
The PCA part of the proposed model for SAR image analysis.
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which are trained at the mth stage, while the dashed lines correspond to the weights of the
already trained neurons. Note that the lateral weights asymptotically converge to zero, so
they do not appear among the already trained neurons.

The first network of Figure 8.7 is devoted to whitening the noise in Equation 8.2, while
the second one is for maximizing the variance given that the noise is already whitened.
Let X; be the input vector of the first network. The noise is whitened, through the feed-
forward weights {wj}, where i and j correspond to the input and output neurons,
respectively, and the superscript 1 designates the weighted matrix of the first network.
After convergence, the vector X is transformed to the new vector X’ via the matrix U =
W;A7Y/2, where W, is the weighted matrix of the first network, A is the diagonal matrix of
eigenvalues of 3, (variances of the output neurons) and A~'/? is the inverse of its square
root. Next, X’ be the input vector of the second network. It is connected to M outputs, with
M < N, corresponding to the intermediate output vector noted X, through the feed-
forward weights {wj}. Once this network is converged, the PC images to be extracted
(vector Y) are obtained as

Y = ATX = UW,X (8.5)

where W, is the weighted matrix of the second network. The activation of each neuron in
the two parts of the network is a linear function of their inputs. The kth iteration of the
learning algorithm, for both networks, is given as:

w(k +1) = wik) + BE)qu(R)P — g, (K)w(k)) (8.6)
ok +1) = (k) + BR)@n()Q — 3 (k)e(K)) (8.7)

Here P and Q are the input and output vectors of the network, respectively. B(k) is a
positive sequence of the learning parameter. The global convergence of the PCA-based
part of the model is strongly dependent on the parameter 8. The optimal choice of this
parameter is well studied in Ref. [15].

8.2.4 ICA of SAR Images by Ensemble Learning

Ensemble learning is a computationally efficient approximation for exact Bayesian
analysis. With Bayesian learning, all information is taken into account in the posterior
probabilities. However, the posterior probability density function (pdf) is a complex
high-dimensional function whose exact treatment is often difficult, if not impossible.
Thus some suitable approximation method must be used. One solution is to find the
maximum A posterior (MAP) parameters. But this method can overfit because it is
sensitive to probability density rather than probability mass. The correct way to
perform the inference would be to average over all possible parameter values by drawing
samples from the posterior density. Rather than performing a Markov chain Monte Carlo
(MCMC) approach to sample from the true posterior, we use the ensemble learning
approximation [11].

Ensemble learning [11,12] which is a special case of variational learning, is a recently
developed method for parametric approximation of posterior pdfs where the search
takes into account the probability mass of the models. Therefore, it solves the tradeoff
between under- and overfitting. The basic idea in ensemble learning is to minimize the
misfit between the posterior pdf and its parametric approximation by choosing a com-
putationally tractable parametric approximation—an ensemble—for the posterior pdf.
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In fact, all the relevant information needed in choosing an appropriate model is contained
in the posterior pdfs of hidden sources and parameters.

Let us denote the set of available data, which are the PC output images of the PCA part
of Figure 8.7, by X, and the respective source vectors by S. Given the observed data X, the
unknown variables of the model are the sources S, the mixing matrix B, the parameters of
the noise and source distributions, and the hyperparameters. For notational simplicity,
we shall denote the ensemble of these variables and parameters by 6. The posterior
P (S, 0|1X) is thus a pdf of all these unknown variables and parameters.

We wish to infer the set pdf parameters 6 given the observed data matrix X.
We approximate the exact posterior probability density, P(S, 6/X), by a more tractable
parametric approximation, Q(S, 6|X), for which it is easy to perform inferences by
integration rather than by sampling. We optimize the approximate distribution by min-
imizing the Kullback-Leibler divergence between the approximate and the true poster-
ior distribution. If we choose a separable distribution for Q(S, 6|X), the Kullback-Leibler
divergence will split into a sum of simpler terms. An ensemble learning model can
approximate the full posterior of the sources by a more tractable separable distribution.

The Kullback-Leibler divergence Cky, between P(S, 6|X) and Q(S, 6|X), is defined by the
following cost function:

Q(S, 61X)

CKL = JQ(S/0|X) IOg(P(S 0|x)>d6 dS (88)

Ckr measures the difference in the probability mass between the densities P(S, 6|X) and
Q(S, 6]X). Its minimum value 0 is achieved when the two densities are the same. For
approximating and then minimizing Ckr, we need the exact posterior density P(S, 6|X)
and its parametric approximation Q(S, 6|X). According to the Bayes rule, the posterior pdf
of the unknown variables S and 6 is such as:

P(X|S, 6)P(S|6)P(9)

P(S, 0|X) = P

(8.9)

The term P(X]S, 0) is obtained from the model that relates the observed data and the
sources. The terms P(S|0) and P(6) are products of simple Gaussian distributions and they
are obtained directly from the definition of the model structure [16]. The term P(X) does
not depend on the model parameters and can be neglected. The approximation Q(S, 6|X)
must be simple for mathematical tractability and computational efficiency. Here, both
the posterior density P(S,6|X) and its approximation Q(S, 0|X) are products of simple
Gaussian terms, which simplify the cost function given by Equation 8.8 considerably: it
splits into expectations of many simple terms. In fact, to make the approximation of the
posterior pdf computationally tractable, we shall choose the ensemble Q(S, §|X) to be a
Gaussian pdf with diagonal covariance. The independent sources are assumed to have
mixtures of Gaussian as distributions. The observed data are also assumed to have
additive Gaussian noise with diagonal covariance. This hypothesis is verified by perform-
ing the whitening step using the simultaneous diagonalization transform as it is given in
Section 8.2.3. The model structure and all the parameters of the distributions are esti-
mated from the data. First, we assume that the sources S are independent of the other
parameters 6, so that Q(S, 8/X) decouples into

Q(S,61X) = Q(SIX)Q(61X) (8.10)
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For the parameters 60, a Gaussian density with a diagonal covariance matrix is supposed.
This implies that the approximation is a product of independent distributions:

Q(1X) = [, Q0 %) (8.11)

The parameters of each Gaussian component density Q;(6{X) are its means 6; and
variances 6;. The Q(6|X) is similar. The cost function Cky is a function of the posterior
means §; and variances 6; of the sources and the parameters of the network. This is
because instead of finding a point estimate, the joint posterior pdf of the sources and
parameters is estimated in ensemble learning. The variances give information about the
reliability of the estimates.

Let us now denote the two parts of the cost function given by Equation 8.8 arising in
the denominator and numerator of the logarithm respectively by C, = — E,(log (P)) and
C, = E,(og (Q)). The variances 6; are obtained by dlfferentlatmg Equation 8.8 with
respect to 6; [16]:

ok _9C,  0C; _9C, 1

KL _Tp 0 T (8.12)
00; 00;  06; 06; 26,

Equating this to zero yields a fixed-point iteration for updating the variances:

- aC,\ !

6, = (2 f’) (8.13)

00;
The means 6; can be estimated from the approximate Newton iteration [16]:
6; — 6 oG, (7G, 71~ 0 %4 6; (8.14)
V00 o2 ) T o6, ‘

The algorithm solves Equation 8.13 and Equation 8.14 iteratively until convergence is
achieved. The practical learning procedure consists of applying the PCA part of the
model. The output PC images are used to find sensible initial values for the posterior
means of the sources. The PCA part of the model yields clearly better initial values than a
random choice. The posterior variances of the sources are initialized to small values.

8.2.5 Experimental Results

The SAR images used are shown in Figure 8.1. To prove the effectiveness of the proposed
method, the FastICA-based method [13,14] is used for comparison. The extracted IC
images using the proposed method are given in Figure 8.8. The extracted IC images
using the FastICA-based method are presented in Figure 8.9. We note that the FastICA-
based method gives inadequate results because the IC images obtained are contrasted too
much. It is clear that the proposed method gives the IC images that are better than the
original SAR images. Also, the results of ICA by ensemble learning exceed largely the
results of the FastlICA-based method. We observe that the effect of the speckle noise is
largely reduced in the images based on ensemble learning especially in the sixth image,
which is an image of high quality. It appears that the low quality of some of the images by
the FastICA method is caused by being trapped in local minimum while the ensemble
learning—based method is much more robust.
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Eighth IC image Ninth IC image

FIGURE 8.8
The results of ICA by ensemble learning.

Table 8.2 shows a comparison of the computation time between the FastiCA method
and the proposed method. It is evident that the FastICA method has significant advantage
in computation time.

8.2.6 Conclusions

We have suggested a Bayesian approach of ICA applied to SAR image analysis. This
consists of using the ensemble learning, which is a computationally efficient approxima-
tion for exact Bayesian analysis. Before performing the ICA by ensemble learning, a PCA
neural network model that performs the simultaneous diagonalization of the noise
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Seventh IC image Ninth IC image
FIGURE 8.9
The results of the FastICA-based method.
TABLE 8.2
Computation Time of FastICA-Based Method and ICA by Ensemble Learning
Method Computation Time (sec) Number of Iterations
FastICA-based method 23.92 270

ICA by ensemble learning 2819.53 130
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covariance matrix and the observed data covariance matrix is applied to SAR images. The
PC images are used as input data of ICA by ensemble learning. The obtained results are
satisfactory. The comparative study with FastlICA-based method shows that ICA by en-
semble learning is a robust technique that has an ability to avoid the local minimal and so
reaching the global minimal in contrast to the FastiCA-based method, which does not have
this ability. However, the drawback of ICA by ensemble learning is the prohibitive
computation time compared to that of the FastlICA-based method. This can be justified
by the fact that ICA by ensemble learning requires many parameter estimations during its
learning process. Further investigation is needed to reduce the computational requirement.
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9.1 Introduction

In this chapter, by employing long-memory spectral analysis techniques, the discrimin-
ation between oil spill and low-wind areas in sea synthetic aperture radar (SAR) images
and the simulation of spectral densities of sea SAR images are described. Oil on the sea
surface dampens capillary waves, reduces Bragg’s electromagnetic backscattering effect
and, therefore, generates darker zones in the SAR image. A low surface wind speed,
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which reduces the amplitudes of all the wave components (not just capillary waves), and
the presence of phytoplankton, algae, or natural films can also cause analogous effects.

Some current recognition and classification techniques span from different algorithms
for fractal analysis [1] (i.e., spectral algorithms, wavelet, and box-counting algorithms for
the estimation of the fractal dimension D) to algorithms for the calculation of the normal-
ized intensity moments (NIM) of the sea SAR image [2]. The problems faced when
estimating the value of D include small variations due to oil slick and weak-wind areas
and the effect of the edges between two anomaly regions with different physical charac-
teristics. There are also computational problems that arise when the calculation of NIM is
related to real (i.e., not simulated) sea SAR images.

In recent years, the analysis of natural clutter in high-resolution SAR images has
improved by the utilization of self-similar random process models. Many natural surfaces,
like terrain, grass, trees, and also sea surfaces, correspond to SAR precision images (PRI)
that exhibit long-term dependence behavior and scale-limited fractal properties. Specific-
ally, the long-term dependence or long-range dependence (LRD) property describes the
high-order correlation structure of a process. Suppose that Y(m,n) is a discrete two-
dimensional (2D) process whose realizations are digital images. If Y (m,n) exhibits long
memory, persistent spatial (linear) dependence exists even between distant observations.

On the contrary, the short memory or short-range dependence (SRD) property
describes the low-order correlation structure of a process. If Y (m,n) is a short-memory
process, observations separated by a long spatial span are nearly independent.

Among the possible self-similar models, two classes have been used in the literature
to describe the spatial correlation properties of the scattering from natural surfaces:
fractional Brownian motion (fBm) models and fractionally integrated autoregressive
moving average (FARIMA) models. In particular, fBm provides a mathematical frame-
work for the description of scale-invariant random textures and amorphous clutter of
natural settings. Datcu [3] used an fBm model for synthesizing SAR imagery. Stewart et al.
[4] proposed an analysis technique for natural background clutter in high-resolution SAR
imagery. They employed fBm models to discriminate among three clutter types: grass,
trees, and radar shadows.

If the fBm model provides a good fit with the periodogram of the data, it means that the
power spectral density (PSD), as a function of the frequency, is approximately a straight
line with negative slope in a log-log plot.

For particular data sets, the estimated PSD cannot be correctly represented by an fBm
model. There are different slopes that characterize the plot of the logarithm of the period-
ogram versus the logarithm of the frequency. They reveal a greater complexity of the
analyzed phenomenon. Therefore, we can utilize FARIMA models that preserve the
negative slope of the long-memory data PSD near the origin and, through the so-called
SRD functions, modify the shape and the slope of the PSD with increasing frequency.

The SRD part of a FARIMA model is an autoregressive moving average (ARMA)
process. llow and Leung [5] used the FARIMA model as a texture model for sea SAR
images to capture the long-range and short-range spatial dependence structures of some
sea SAR images collected by the RADARSAT sensor. Their work was limited to the
analysis of isotropic and homogeneous random fields, and only to AR or MA models
(ARMA models were not considered). They observed that, for a statistically isotropic and
homogeneous field, it is a common practice to derive a 2D model from a one-dimensional
(1D) model by replacing the argument K in the PSD of a 1D process, S(K), with

K| = {/KZ + Kj to get the radial PSD: S(|[K]|). When such properties hold, the PSD of
the correspondent image can be completely described by using the radial PSD.
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Unfortunately, sea SAR images cannot be considered simply in terms of a homoge-
neous, isotropic, or amorphous clutter. The action of the wind contributes to the anisot-
ropy of the sea surfaces and the particular self-similar behavior of sea surfaces and
spectra, correctly described by means of the Weierstrass-like fractal model [6], strongly
complicates the self-similar representation of sea SAR imagery.

Bertacca et al. [7,8] extended the work of Ilow and Leung to the analysis of nonisotropic
sea surfaces. The authors made use of ARMA processes to model the SRD part of the mean
radial PSD (MRPSD) of sea European remote sensing 1 and 2 (ERS-1 and ERS-2) SAR PRI
They utilized a FARIMA analysis technique of the spectral densities to discriminate
low-wind from oil slick areas on the sea surface.

A limitation to the applicability of FARIMA models is the high number of param-
eters required for the ARMA part of the PSD. Using an excessive number of parameters
is undesirable because it increases the uncertainty of the statistical inference and the
parameters become difficult to interpret. Using fractionally exponential (FEXP) models
allows the representation of the logarithm of the SRD part of the long-memory PSD
to be obtained, and greatly reduces the number of parameters to be estimated.
FEXP models provide the same goodness of fit as FARIMA models at lower compu-
tational costs.

We have experimentally determined that three parameters are sufficient to characterize
the SRD part of the PSD of sea SAR images corresponding to absence of wind, low surface
wind speeds, or to oil slicks (or spills) on the sea surface [9].

The first step in all the methods presented in this chapter is the calculation of the
directional spectrum of a sea SAR image by using the 2D periodogram of an N x N image.
To decrease the variance of the spectral estimation, we average spectral estimates
obtained from nonoverlapping squared blocks of data. The characterization of isotropic
or anisotropic 2D random fields is done first using a rectangular to polar coordinates
transformation of the 2D PSD, and then considering, as radial PSD, the average of the
radial spectral densities for ¥ ranging from 0 to 2m radians. This estimated MRPSD is
finally modeled using a FARIMA or an FEXP model independently of the anisotropy of
sea SAR images. As the MRPSD is a 1D signal, we define these techniques as 1D PSD
modeling techniques.

It is observed that sea SAR images, in the presence of a high or moderate wind, do not
have statistical isotropic properties [7,8]. In these cases, MRPSD modeling permits dis-
crimination between different sea surface anomalies, but it is not sufficient to completely
represent anisotropic and nonhomogeneous fields in the spectral domain. For instance, to
characterize the sea wave directional spectrum of a sea surface, we can use its MRPSD
together with an apposite spreading function. Spreading functions describe the anisot-
ropy of sea surfaces and depend on the directions of the waves. The assumption of spatial
isotropy and nondirectionality for sea SAR images is valid when the sea is calm, as the sea
wave energy is spread in all directions and the SAR image PSD shows a circular sym-
metry. However, with surface wind speeds over 7 m/sec, and, in particular, when the
wind and the radar directions are orthogonal [10], the anisotropy of the PSD of sea SAR
images starts to be perceptible. Using a 2D model allows the information on the shape of
the SAR image PSD to be preserved and provides a better representation of sea SAR
images. In this chapter, LRD models are used in addition to the fractal sea surface spectral
model [6] to obtain a suitable representation of the spectral densities of sea SAR images.
We define this technique as the 2D PSD modeling technique. These 2D spectral models
(FARIMA-fractal or FEXP-fractal models) can be used to simulate sea SAR image spectra
in different sea states and wind conditions—and with oil slicks—at a very low computa-
tional cost. All the presented methods demonstrated reliable results when applied to ERS-
2 SAR PRI and to ERS-2 SAR Ellipsoid Geocoded Images.
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9.2 Methods of Estimating the PSD of Images

The problem of spectral estimation can be faced in two ways: applying classical methods,
which consist of estimating the spectrum directly from the observed data, or by a para-
metrical approach, which consists of hypothesizing a model, estimating its parameters
from the data, and verifying the validity of the adopted model a posteriori.

The classical methods of spectrum estimation are based on the calculation of the Fourier
transform of the observed data or of their autocorrelation function [11]. These techniques
of estimation ensure good performances in case the available samples are numerous and
require the sole hypothesis of stationarity of the observed data. The methods that depend
on the choice of a model ensure a better estimation than the ones obtainable with
the classical methods in case the available data are less (provided the adopted model
is correct).

The classical methods are preferable for the study of SAR images. In these applications,
an elevated number of pixels are available and one cannot use models that describe the
process of generation of the samples and that turn out to be simple and accurate at the
same time.

9.2.1 The Periodogram

This method of estimation, in the 1D case, requires the calculation of the Fourier trans-
form of the sequence of the observed data. When working with bidimensional stochastic
processes, whose sample functions are images [12], in place of a sequence x[n], we
consider a data matrix x[m, n], m = 0,1,..., M — 1), n = 0,1,..., (N — 1). In these
cases, one uses the bidimensional version of the periodogram as defined by the equation

2

Prer( fi, f2) = Rl Aix[m n]e 2 fim+fon) ©.1)
PER(J1, J2) = 5 242 , .
Observing that
M-1 N-1
X(fi, fo) = Zx[m,n]e*fzﬂ(ﬁmﬁzn) ©2)
m=0 n=

is the Fourier bidimensional discrete transform of the data sequence, Equation (9.1), can
thus be rewritten as

Poer( fi f2) = 11 IXCfu, P 93)

It can be demonstrated that the estimator in the above equation is not only asymptotically
unbiased (the average value of the estimator tends, at the limit for N — oo and M — oo, to
the PSD of the data) but also inconsistent (the variance of the estimator does not tend to
zero in the limit for N — oo and M — o0). The technique of estimation through the
periodogram remains, however, of great practical interest: from Equation 9.3, we perceive
the computational simplicity achievable through an implementation of the calculation of
the fast Fourier transform (FFT).
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9.2.2 Bartlett Method: Average of the Periodograms

193

A simple strategy adopted to reduce the variance of the estimator (Equation 9.3) consists
of calculating the average of several independent estimations. As the variance of the
estimator does not decrease with the increasing of the dimensions of the matrix of the
data, one can subdivide this matrix in disconnected subsets, calculate the periodogram of
each subset and execute the average of all the periodograms. Figure 9.1 shows an image of
N x M pixels (a matrix of N x M elements) subdivided into K* subwindows that are not

superimposed by each of the R x S elements
m
xp,1,[m, n] = x[m + LK, n + [,K] { "

with

M=RxK(lL=0,1,...,(K-1)
N=SxK\l,=01,..., (K-1)

The estimation according to Bartlett’s procedure gives
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FIGURE 9.1
Calculation of the periodogram in an image (a bidimensional sequence) with Bartlett’s method.

(9.4)

(9.5)

(9.6)
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In the above equation, Ppgr™( fi, fo) represents the periodogram calculated on the
subwindows identified in the couple (I, /,) and defined by the equation

R-1 5-1 . 2
x1,,[m, n]e AR

n=0

plity)

PER(flle) = RS 9.7)

[=}

m=

A reduction in the dimensions of the windows containing the data that are analyzed
corresponds to a loss of resolution for the estimated spectrum. Consider the average value
of the estimator modified according to Bartlett:

._\

K-1 K—
1
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From the above equation, we obtain the equation
E{Poart(fi, o) } = Walh, o) © @S:( i, fo) 9.9)

From the above equation, we have that the average value of the estimator is the result of
the double periodical convolution between the function Wg( f1, f2) and the spectral density
of power S,( f1, f2) relative to the data matrix. Equation 9.6 thus defines a biased estimator.
By a direct extension of the 1D theory of the spectral estimate, it is possible to interpret the
function Wg( f1, f2) as a 2D Fourier transform of the window

wik, ) = { (-4 i { m §§ 9.10)

0 otherwise

Given that the window (Equation 9.10) is separable, the Fourier transform is the product
of the 1D transforms:

B sin(mfiR) Y /sin(mf,S) ¥
Welh ) =g 5 < sin(mfy) ) (sin(wf2)> ©.11)

The application of Bartlett’s method determines the smearing of the estimated spectrum.
Such a phenomenon is scarcely relevant only if Wg( f1, f>) is very narrow in relation to
X(f1, f2), that is, if the window used is sufficiently long. For example, for R = S = 256, we
have that the band at —3 dB of the principal lobe of Wi( f1, f>) is equal to around % = 256
The resolution in frequency is equal to this value. Bartlett’s method permits a reductlon in
the variance of the estimator by a factor proportional to K* [12]:

var{ Pursr(fu, )} = gvar{ Pl (fi )} 9.12)

Such a result is correct only if the various periodograms are independent estimates. When
the subsets of data are chosen as the contiguous blocks of the same realization, as shown
in Figure 9.1, the windows of the data do not turn out to be uncorrelated among
themselves, and a reduction in the variance by a factor inferior to K* must be accepted.
In conclusion, the periodogram is a nonconsistent and asymptotically unbiased estima-
tor of the PSD of a bidimensional sequence. The bias of the estimator can be mathematically
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described in the form of a double convolution of the true spectrum with a spectral window

. 2, 2
of the type Waiot( f1, f2) = 3 (Sls?rET(r 1{ %D) (S:n(?q{}g)) , where with M and N we indicate the

dimensions of the bidimensional sequence considered. If we carry out an average of
the periodograms calculated on several adjacent subsequences (Bartlett’s method), each
of R x S samples, as in Figure 9.1, the bias of the estimator can still be represented as the
double convolution (see Equation 9.9) of the true spectrum with the spectral window
(Equation 9.11):

in(mw 2 /sin(mfS)\
Wa(fi, fo) = % % (S;?rf (wf}ﬁ)) (SSIEI( : 1{;2))) , whereR = % S :% (9.13)

The bias of the estimator f’BART( f1, f2) is greater than that of ppER( f1, ), because of the
greater width of the principal lobe of the corresponding spectral window. The bias can
hence be interpreted in relation to its effects on the resolution of the spectrum. For a fixed
dimension of the sequence to be analyzed, M rows and N columns, the variance of the
estimator diminishes with the increase in the number of the periodograms, but R and S
also diminish and thus the resolution of the estimated spectrum.

Therefore, in Bartlett’s method, a compromise needs to be reached between the bias or
resolution of the spectrum on one side and the variance of the estimator on the other. The
actual choice of the parameters M, N, R, and S in a real situation is orientated by the a priori
knowledge of the signal to be analyzed. For example, if we know that the spectrum has a
very narrow peak and if it is important to resolve it, we must choose sufficiently large R
and S values to obtain the desired resolution in frequency. It is then necessary to use a
pair of sufficiently high M and N values to obtain a conveniently low variance for
Bartlett’s estimator.

9.3 Self-Similar Stochastic Processes

In this section, we recall the definitions of self-similar and long-memory stochastic
processes.

Definition 1: Let Y(u), u € R be a continuous random process. It is called self-similar with self-
similarity parameter H, if for any positive constant B, the following relation holds:

BHY (B Y (u) 9.14)

In Definition 1, 377 Y (Bu) is called rescaled process with scale factor 8, and ¢ means
the equality of all the finite dimensional probability distributions.

For any sequence of points uy,...,uy and all 8 > 0, we have that B [YBuw),...,Y
(Buy)] has the same distribution as [Y(uy),..., Y(un)]

In this chapter, we analyze the correlation and PSD structure of discrete stochastic
processes. Then we can impose a condition on the correlation of stochastic stationary
processes introducing the definition of second-order self-similarity.

Let Y(n), n € N be a covariance stationary discrete random process with mean n =
E{Y(n)}, variance o”, and autocorrelation function R(m) = E{Y(n + m)Y(n)}, m > 0.

The spectral density of the process is defined as [13]:
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S(K):g ZOO: R(m)e™K (9.15)

m=—oQ
Assume that [14,15]

lim R(m)=cg-m™" (9.16)
m—o0
where cr is a constantand 0 < y < 1. Foreach !/ = 1,2,..., we indicate with the symbols Y!
(n) = {Y'(n), n = 1,2,...} the series obtained by averaging Y(n) over nonoverlapping
blocks of size I:

Y[(n — DI+ + Y[(nl — 1)]
l 7

Y!(n) = >1 (9.17)

Deﬁmtton 2: A process is called exactly second-order self-similar with self-similarity parameter
H = 1——1ffor eachl = 1,2,..., we have that

Var{Y'} = ¢?I""

R!(m) = R(m) = [(m + 1) — 2 4 |m — |2H}, m>0 (9.18)

where R'(m) denotes the autocorrelation function of Y!(n)
Definition 3: A process is called asymptotically second-order self-similar with self-similarity

parameter H =1 — % if
llim R!(m) = R(m) (9.19)

Thus, if the autocorrelation functions of the processes Y'(n) are the same as or become
indistinguishable from R(m) as m — oo, the covariance stationary discrete process Y(n) is
second-order self-similar.

Lamperti [16] demonstrated that self-similarity is produced as a consequence of limit
theorems for sums of stochastic variables.

Definition 4: Let Y(u), u € R be a continuous random process. Suppose that for any n > 1,
v € Rand any n points (u4, . .., u,), the random vectors {Y(u; + v) — Y(uy +v—1),..., Y(u, + v)
— Y(u, + v — 1)} show the same distribution. Then the process Y(u) has stationary increments.

Theorem 1: Let Y(u), u € R be a continuous random process. Suppose that:

1. P{Y(1) #0} >0

2. Xy, Xy, - - - is a stationary sequence of stochastic variables

3. by, by, - - - are real, positive normalizing constants for which JLnJO {log (by)} = o0
4. Y(u) is the limit in distribution of the sequence of the normalized partial sums

| ]

b 'S, =b 1ZX, n=12,. (9.20)

Then, for each t > 0O there exists an H > 0 such that

1. Y(u) is self-similar with self-similarity parameter H
2. Y(u) has stationary increments
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Furthermore, all self-similar processes with stationary increments and H > 0 can be obtained as
sequences of normalized partial sums.

Let Y(u), u € R be a continuous self-similar random process with self-similarity par-
ameter H such that

Y(u) L uty (1) (9.21)

for any u > 0. ;
Then, indicating with — the convergence in distribution, we have the following behav-
ior of Y(u) as u tends to infinity [17]:

« If H < 0, then Y(u) %0
« It H = 0, then Y(u)2Y(1)
« If H> 0and Y(1) # 0, then |Y(1)| % 0o

If u tends to zero, we have the following:

« If H < 0 and Y(1) # 0, then |Y(1)| % 0o
« If H = 0, then Y()2Y(1)
« If H> 0, then Y(1) 50

We notice that:

¢ Y(u) is not stationary unless Y(u) =0or H = 0

e If H = 0, then P{Y(u) = Y1)} = 1foranyu >0

e If H <0, then Y(u) is not a measurable process unless P{Y(u) = Y(1) = 0} = 1 for
any u > 0 [18]

 As stationary data models, we use self-similar processes, Y(u), with stationary
increments, self-similarity parameter H > 0 and P{Y(0) = 0} =1

9.3.1 Covariance and Correlation Functions for Self-Similar Processes with Stationary
Increments

Let Y(u), u € R be a continuous self-similar random process with self-similarity parameter
H. Assume that Y(u) has stationary increments and that E{Y(u#)} = 0. Indicate with o =
E{Y(u) — Y(u — 1)} = E{Y? (u)} the variance of the stationary increment process X(u) with
X)) = Y(u) — Y(u — 1). We have that

E{ Y (1) — Y(v)]z} - E{[Y(u —0) - Y(O)]z} = o2 — v (9.22)

where u, v € R and u > v.
In addition

E{[Y@) - YO)P | = E{ Y} + E{ Y@ } —2E(v)Y(©)} =
= o2t + %0 — 2Cy(u,v) (9.23)

where Cy(u, v) denotes the covariance function of the nonstationary process Y(u).
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Thus, we obtain that

Cy(u,v) = %02 [ — (u — o) + 0] (9.24)
The covariance function of the stationary increment sequence X(j) = Y(j) — Y(G —1),j =
1,2,...is

C(m) = Coov{X(j), X(j +m)} = Cov{X(1), X(1 +m)} =
2 2

m+1 m m m+1 2
ZEE{ DX +[D X | - D Xp)| —|DXp) } (9.25)
p=1 p=2 p=1 p=2

= % {E {[Y(l +m) — Y(o)]z} + E{mm —1)- Y(O)]Z} - ZE{[Y(m) - y(o)]2}}

After some algebra, we obtain

C(m) = %az [((m + 1" —2m® + (m — 1)*], m >0

(9.26)
Cim)=C(—-m), m<0
Then, the correlation function, R(m) = &T), is
ag
1 oH 2H 2H
_ _ - >
R(m) 5 [(m+1) 2m™ 4+ (m—1)*"], m>0 ©.27)
R(m)=R(—m), m<0
If 0 < H < 1and H # 0, we have that [19]
lim {R(m)} = HRH — 1)m*i2 (9.28)

m—oo
We notice that:

e If §<H <1, then the correlations decay very slowly and sum to infinity:

i R(m) = oo. The process has long memory (it has LRD behavior).

m=—00

e IfH= %, then the observations are uncorrelated: R (m) = 0 for each m.

e If 0 < H < 3, then the correlations sum to zero: Y. R(m) = 0. In reality, the last

m=—o00
condition is very unstable. In the presence of arbitrarily small disturbances [19],

oo
the series sums to a finite number: Y. R(m)=c, ¢ #0.
m=—00

e If H = 1, from Equation 9.7 we obtain

Yo S u Y Y(m), m=1,2,... (9.29)
and R(m) = 1 for each m.

e If H > 1, then R(m) can become greater than 1 or less than —1 when m tends to
infinity.
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The last two points, corresponding to H > 1, are not of any importance. Thus, if correl-
ations exist and hm {R(m)} =0,then 0 < H < 1.

We can conclude I by observing that:

¢ A self-similar process for which Equation 9.7 holds is nonstationary.

e Stationary data can be modeled using self-similar processes with stationary
increments.

¢ Analyzing the autocorrelation function of the stationary increment process, we
obtain

- If 1 < H <1, then the increment process has long memory (LRD)
-IfH= %, then the observations are uncorrelated
- If 0 < H < , then the process has short memory and its correlations sum to zero

9.3.2 Power Spectral Density of Self-Similar Processes with Stationary Increments

Let Y(u) be a self-similar process with stationary increments, finite second-order
moments, 0 < H < 1 and lim R(m) = 0.

Under these hypotheses",]_t)ﬁoe PSD of the stationary increment sequence X(j) is [20]:

S(k) = 2cs[1 — cos(k)] i 2mp + k|2, ke[ -, m] (9.30)

p=—00
o2
where c5 = > sin(mH)['2H + 1) and o* = Var {X(j)}.
w
Calculating the Taylor expansion of S(K) in zero, we obtain
S(K) = cslk|" "+ o (Jmne —2H2) (9.31)
We note that if 1 < H < 1, then the logarithm of the PSD, log[S(k)], plotted against the

logarithm of frequency, log(k), diverges when k tends to zero. In other words, the PSD of
long-memory data tends to infinity at the origin.

9.4 Long-Memory Stochastic Processes

Intuitively, long-memory or LRD can be considered as a phenomenon in which current
observations are strongly correlated to observations that are far away in time or space.

In Section 9.3, the concept of self-similar LRD processes was introduced and was shown
to be related to the shape of the autocorrelation function of the stationary increment
sequence X(j). If the correlations R(m) decay asymptotically as a hyperbolic function, their
sum over all lags diverges and the self-similar process exhibits an LRD behavior.

For the correlations and the PSD of a stationary LRD process, the following properties
hold [19]:

e The correlations R(mn) are asymptotically equal to cg|m|® for some 0 < § < 1.
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e The PSD S(K) has a pole at zero that is equal to a constant csk P for some 0 < B < 1.

e Near the origin, the logarithm of the periodogram I(k) plotted versus the logarithm
of the frequency is randomly scattered around a straight line with negative slope.

Definition 5: Let X(v), v € R be a continuous stationary random process. Assume that there exists
a real number 0 < 6 < 1 and a constant cy such that

lim R(m)a —1 (9.32)
m—oo CRM™

Then X(v) is called a stationary process with long-memory or LRD
8
In Equation 9.32, the Hurst parameter H =1 — 2 is often used instead of §.

On the contrary, stationary processes with exponentially decaying correlations
R(m) < cb™ (9.33)

where c and b are real constants and 0 < ¢ < 00, 0 < b < 1 are called stationary processes
with short-memory or SRD.
We can also define LRD by imposing a condition on the PSD of a stationary process.
Definition 6: Let X(v), v € R be a continuous stationary random process. Assume that there
exists a real number 0 < B < 1 and a constant cs such that

Sky
k=00 cglk| P

(9.34)

Then X(v) is called a stationary process with long-memory or LRD.

Such spectra occur frequently in engineering, geophysics, and physics [21,22]. In
particular, studies on sea spectra using long-memory processes have been carried out
by Sarpkaya and Isaacson [23] and Bretschneider [24].

We notice that the definition of LRD by Equation 9.33 or Equation 9.34 is an asymptotic
definition. It depends on the behavior of the spectral density as the frequency tends to
zero and behavior of the correlations as the lag tends to infinity.

9.5 Long-Memory Stochastic Fractal Models

Examples of LRD processes include fractional Gaussian noise (fGn), FARIMA, and FEXP.

fGn is the stationary first-order increment of the well-known fractionally fBm model.
fBm was defined by Kolmogorov and studied by Mandelbrot and Van Ness [25]. It
is a Gaussian, zero mean, nonstationary self-similar process with stationary incre-
ments. In one dimension, it is the only self-similar Gaussian process with stationary
increments. Its covariance function is given by Equation 9.24.

A particular case of an fBm model is the Wiener process (Brownian motion). It is a zero-
mean Gaussian process whose covariance function is equal to Equation 9.24 with H =]
(the observations are uncorrelated). In fact, one of the most important properties of
Brownian motion is the independence of its increments.

As fBm is nonstationary, its PSD cannot be defined. Therefore, we can study the
characteristics of the process by analyzing the autocorrelation function and the PSD of
the fGn process.
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Fractional Gaussian noise is a Gaussian, null mean, and stationary discrete process. Its
autocorrelation function is given by Equation 9.27) and is proportional to |m|* = % as m
tends to infinity (Equation 9.28). Therefore, the discrete process exhibits SRD for
0 < H < 4, independence for H = } (Brownian motion), and LRD for 1 < H < 1.

As all second-order self-similar processes with stationary increments have the same
second-order statistics as fBm, their increments have all the same correlation functions as
fGn. FGn processes can be completely specified by three parameters: mean, variance, and
the Hurst parameter.

Some data sets in diverse fields of statistical applications, such as hydrology, broad-
band network traffic, and sea SAR images analysis, can exhibit a complex mixture of SRD
and LRD. It means that the corresponding autocorrelation function behaves similar to that
of LRD processes at large lags, and to that of SRD processes at small lags [8,26]. Models
such as fGn can capture LRD but not SRD behavior. In these cases, we can use models
specifically developed to characterize both LRD and SRD, like FARIMA and FEXP.

9.5.1 FARIMA Models

FARIMA models can be introduced as an extension of the classic ARMA and ARIMA
models.

To simplify the notation, we consider only zero-mean stochastic processes. An
ARMA(p, q) process model is a stationary discrete random process. It is defined to be
the stationary solution of

d(B)Y(n) = W(B)W(n) (9.35)
where:

* B denotes the backshift operator defined by

Y(n) — Y(n — 1) = (1 — B)Y(n)
(Y1) — Y(n — 1)) — (Y1 — 1) — Y(n — 2)) = (1 — B)*Y(n) (9.36)

e ®(x) and P(x) are polynomials of order p and g, respectively:

dx)=1- XP: D, x"

m=1
q
V) =1-) ¥,x"
m=1

¢ Itisassumed that all solutions of ®(x) = 0 and ¥(x) = 0 are outside the unit circle.

e Wn), n = 1,2,...are ii.d. Gaussian random variables with zero mean and
variance o>

An ARIMA process is the stationary solution of

®(B)(1 — BY'Y(n) = W(B)W(n) (9.37)
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where d is an integer.
If d > 0, then (1 — B)* is given by

d
1-Bf =) ( i )(—1)’”3’” (9.38)
m=0

with the binomial coefficients

A r{d+1)
(m)_m!(d—m)!_F(m+1)F(d—m+1)

(9.39)

As the gamma function I'(x) is defined for all real numbers, the definition of binomial
coefficients can be extended to all real numbers d.
The extended definition is given by

B =% ( d )( _1y"B" (9.40)

m
m=0

In Equation 9.26, if 4 is an integer, all the terms for m > d are zero. On the contrary, if d is a
real number, we have a summation over an infinite number of indices.
Definition 7: Let Y(n) be a discrete stationary stochastic process. If it is the solution of

®(B)(1 — BY'Y(n) = (B)W(n) (9.41)

for some —% < d <3, then Y(n) is a FARIMA(p, d, q) process [27,28].

LRD occurs for 0 < d < , and for d > ] the process is not stationary. The coefficient d is
called the fractional differencing parameter.

There are four special cases of a FARIMA(p, d, 9) model:

Fractional differencing (FD) = FARIMA(0,d, 0)

* Fractionally autoregressive (FAR) = FARIMA(p, 4, 0)
Fractionally moving average (FMA) = FARIMA(0,d, q)
FARIMA(p,d, q)

In Ref. [5], llow and Leung used FMA and FAR models to represent some sea SAR images
collected by the RADARSAT sensor as 2D isotropic and homogeneous random fields.
Bertacca et al. extended Ilow’s approach to characterize nonhomogeneous high-resolution
sea SAR images [7,8]. In these papers, the modeling of the SRD part of the PSD model
(MA, AR, or ARMA) required from 8 to more than 30 parameters.

FARIMA(p, d, q) has p + g + 3 parameters, it is much more flexible than fGn in terms of
the simultaneous modeling of both LRD and SRD, but it is known to require a large
number of model parameters and to be not computationally efficient [26]. Using
FEXP models, Bertacca et al. defined a simplified analysis technique of sea SAR images
PSD [9].

9.5.2 FEXP Models

FEXP models were introduced by Beran in Ref. [29] to reduce the numerical complexity of
Whittle’s approximate maximum likelihood estimator (time domain MLE estimation of
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long memory) [30] principally for large sample size, and to decrease the CPU times
required for the approximate frequency domain MLE of long-memory, in particular, for
high-dimensional parameter vectors to estimate. Operating with FEXP models leads to the
estimation of the parameters in a generalized linear model. This methodology permits
the valuation of the whole vector of parameters independently of their particular charac-
ter (i.e., LRD or SRD parameters). In a generalized linear model, we observe a random
response y with mean p and distribution function F [31]. The mean u can be expressed as

g(,u) ="My +Mmv1+ -+ N0n (9.42)

where vy, vy, ...,0, are called explanatory variables and are related to u through the link
function g(u).
Let X(I), ] = 1,2,..., n be samples of a stationary sequence at points | = 1,2,..., n.
The periodogram ordinates, I(k;,), j = 1,2,..., n, are given by [19]:

1 n - n—1 ~ .
I(kjn) = py— Z [X(l) -X ] itk Z Cn(m)e1Mkf"’ (9.43)
=1 m=—(n-1)

where kj, = 27”, j=1,2,...,n" are the Fourier frequencies, n* = |%5!|, |x] denotes the

integer part of x, X,, is the sample mean, and C”(m) are the sample covariances:

Z X(1) — X [X( + |m]) — X] (9.44)

=1

S\H

It is known that the periodogram I(k), calculated on an n-size data vector, is an asymp-
totically unbiased estimate of the power spectral density S(k):

lim E{I(k)} = S(k) (9.45)

n—oo

Further, for short-memory processes and a finite number of frequencies ki, ..., ky € [0,7],
the corresponding periodogram ordinates I(ky), ..., I(ky) are approximately independent
exponential random variables with means S(k),..., S(ky). For long-memory processes,
this result continues to be valid under certain mild regularity conditions [32]. The period-
ogram of the data is usually calculated at the Fourier frequencies. Thus, the samples I(k; )
are independent exponential random variables with means S(k; ,,).

When we estimate the MRPSD, we can employ the central limit theorem and consider the
mean radial periodogram ordinates I,,,(k;,,) as approximately independent Gaussian ran-
dom variables with means S,,,/(k;,,) (the MRPSD at the frequencies k; ,).

Assume that

Yin = Lnr(kjn) (9.46)
Then the expected value of y; , is given by

= Surlki) 9.47)
Suppose that there exists a link function

v(w) = mfi(k) + mofa(k) + -+ + mufm(k) (9.48)
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Equation 9.48 defines a generalized linear model where y is the vector of the mean radial
periodogram ordinates with a Gaussian distribution F, the functions f; (k),i = 1,..., M are
called explanatory variables, and v is the link function.

It is observed that, near the origin, the spectral densities of long-memory processes are
proportional to

k—Zd — e—2dlog(k) (949)
so that a convenient choice of the link function is

¥(w) = log () (9.50)

Definition 8: Let r (k):[—m, w] — R be an even function [29] for which }(irr(} er) =1.

Define zg = 1. Let zy,. .., z; be smooth even functions in [—mw,m] such that the n* x (q + 1)
matrix A, with column vectors [z(22), z;(*%), z/(&F), ..., z (”’T“)}T, 1=1,...,q,is nonsingular
for any n. Define a real vector ¢ = [no, H, My, ..., ng] with % <H<1

A stationary discrete process Y(m) whose spectral density is given by

Sk;p) = r(k)' 2 eXp{Xq: mZz(k)} (9.51)
1=0

is an FEXP process. The functions z, . .., z, are called short-memory components, whereas r is the
long-memory component of the process.

We can choose different sets of short-memory components. Each set zy, ..., z, corres-
ponds to a class of FEXP models. Beran observed that two classes of FEXP models are
particularly convenient. These classes are characterized by the same LRD component

, k
rk) = |1 —e*| = 2ﬁn<§)‘ (9.52)
If we define the short-memory functions as
zi(k) =cos(lk), 1=1,2,...,9 (9.53)

then the short-memory part of the PSD can be expressed as a Fourier series [33].
If the short-memory components are equal to

2=k, 1=1,2,...,q (9.54)

then the logarithm of the SRD component of the spectral density is assumed to be a finite-
order polynomial [34]. In all that follows, this class of FEXP models is referred to as
polynomial FEXP models.

9.5.3 Spectral Densities of FARIMA and FEXP Processes

It is observed that a FARIMA process can be obtained by passing an FD process through
an ARMA filter [19]. Therefore, in deriving the PSD of a FARIMA process Sparmva(k), we
can refer to the spectral density of an ARMA model Sarma (k).

Following the notation of Section 9.5.1, we have that
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o2 ‘I’(eik) 2
Sarma(k) = W|7|2 (9.55)
2m[W(eh)|
Then we can write the expression of Sparmva (k) as
o N
St ) = 1~ €| S zaua(h) = [25in (5| Saeua® 9.56)
If k tends to zero, Sparmma(k) is asymptotically equal to
_ a2 W) .
Searmvia (k) = Sarma (O)|K| ™ = M k|~ (9.57)
and it diverges for d > 0.
Comparing Equation 9.57 and Equation 9.31, we see that
1
d=H - 3 (9.58)

As mentioned in the preceding sections, LRD occurs for 1 < H <1 or 0 <d < 1. It has
been demonstrated that LRD occurs for 0 < d < % for 2D self-similar processes, and, in
particular, for a fractal image [35].

Let us rewrite the expression of the polynomial FEXP PSD as follows:

. (k
2sin ( 2)
where Sgrp (k;¢) denotes the SRD part of the PSD.

Modeling of sea SAR images PSD is concerned with handling functions of both LRD
and SRD behaviors. If we compare Equation 9.56 with Equation 9.59, the result is that
FARIMA and FEXP models provide an equivalent description for the LRD behavior of the
estimated sea SAR image MRPSD. To have a better understanding of the gain obtained by
using polynomial FEXP PSD, we must analyze the expressions of its SRD component.

It goes without saying that the exponential SRD of FEXP is more suitable than a ratio of
polynomials to represent rapid SRD variability of the estimated MRPSD. In the next
section, we employ FARIMA and FEXP models to fit some MRPSD obtained from high-
resolution ERS sea SAR images.

—2d

q
Skip) = [1 —e 72 eXp{Z mZz(k)} = Ssrp (ki) (9.59)
1=0

9.6 LRD Modeling of Mean Radial Spectral Densities of Sea SAR Images

As described in Section 9.1, the MRPSD of a sea SAR image is obtained by using a
rectangular to polar coordinates transformation of the 2D PSD and by calculating the
average of the radial spectral densities for ¥ ranging from 0 to 2 radians. This MRPSD
can assume different shapes corresponding to low-wind areas, oil slicks, and the sea
in the presence of strong winds. In any case, it diverges at the origin independently of
the surface wind speeds, sea states, and the presence of oily substances on the sea
surface [8].
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LRD was first used by llow and Leung in the context of sea SAR images modeling and
simulations. Analyzing some images collected by the RADARSAT sensor and utilizing
FAR and FMA processes, they extended the applicability of long-memory models to
characterize the sea clutter texture in high-resolution SAR imagery. An accurate repre-
sentation of clutter in satellite images is important in sea traffic monitoring as well as in
search and rescue operations [5], because it can lead to the development of automatic
target recognition algorithms with improved performance.

The work of llow and Leung was limited to isotropic processes. In fact, in moderate
weather conditions, the ocean surface exhibits homogeneous behavior. The anisotropy of
sea SAR images depends, in a complex way, on the SAR system (frequency, polariza-
tion, look-angle, sensor velocity, pulse repetition frequency, pulse duration, chirp band-
width) and on the ocean (directional spectra of waves), slick (concentration,
surface tension, and then ocean spectral dampening), and environment (wind history)
parameters.

It is observed [36] that the backscattered signal intensity depends on the horizontal
angle ¢ between the radar look direction and the directions of the waves on the sea
surface. The maximum signal occurs when the radar looks in the upwind direction, a
smaller signal when the radar looks downwind, and the minimum signal is measured
when the radar looks normal to the wind direction.

In employing the direct transformation defined by Hasselmann and Hasselmann [10],
we observed that the anisotropy of sea SAR image spectra tends to decrease as ¢ increases
from 0 to m/2 radians [37]. We can consider the sea SAR images corresponding to sea
surfaces with no swells and with surface winds with speeds lower than 5 m/sec as
isotropic. When the surface wind speed increases, the anisotropy of the estimated direc-
tional spectra starts to be noticeable. For surface wind speeds higher than 10 m/sec,
evident main lobes appear in the directional spectra of sea SAR images, and the hypoth-
esis of isotropy is no longer appropriate.

It is important to underline that a low surface wind speed is not always associated with
an isotropic sea surface. Sometimes, wind waves generated far from the considered area
can spread to a sea surface with little wind (with low amplitudes) and determine a
reduction in the spatial correlation in the context of long-memory models.

In addition, the land and some man-made structures can act as a shelter from the wind
in the proximity of the coast. Also, an island or the particular conformation of the shore
can represent a barrier and partially reduce the surface wind speed.

Nevertheless, a low surface wind speed measured far from the coast, which is respon-
sible for the attenuation of the sea wave spectra in the region of the wind waves,
frequently corresponds to almost isotropic sea SAR images.

The spectral density and autocorrelation properties, introduced in the previous
sections for 1D self-similar and LRD series, can be extended to 2D processes Y(x, y),
where (x, y) € R? whose realizations are images [35]. This process is a collection of
matrices whose elements are random variables. We also refer to Y(x, y) as a random
field.

If the autocorrelation function of the image is invariant under all Euclidean motions,
then it depends only on the Euclidean distance between the points

Ry(u,v) = E{Y(x,1)Y(x + u, y + v)} (9.60)

and the field is referred to as homogeneous and isotropic.

The PSD of the homogeneous field, Sy(k, k,), can be calculated by taking the 2D Fourier
transform of Ry(u, v). For sampled data, this is commonly implemented using the 2D FFT
algorithm.
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As observed in Ref. [5], for a statistically isotropic and homogeneous field, we can
derive a 2D model from a 1D model by replacing k € R in the PSD of a 1D process with the
radial frequency kg =  /(k} +k7) to get the radial PSD.

Isotropic and homogeneous random fields can be completely represented in the
spectral domain by means of their radial PSD. On the contrary, the representation
of nonisotropic fields requires additional information. Our experimental results show
that FARIMA models always provide a good fit with the MRPSD of isotropic and
nonisotropic sea SAR images.

In the next section, the results obtained in Refs. [5,8] are compared with those we get by
employing a modified FARIMA-based technique or using FEXP models.

In particular, the proposed method utilizes a noniterative technique to estimate the
fractional differencing parameter d [9].

As in Ref. [8], we use the LRD parameter d, which depends on the SAR image
roughness, and a SRD parameter, which depends on the amplitude of the backscattered
signal to discriminate between low-wind and oil slick areas in sea SAR imagery.

Furthermore, we will demonstrate that FEXP models allow the computational effi-
ciency to be maximized.

In this chapter, with the general term “SAR images,” we refer to amplitude multi-look
ground range SAR images, such as either ERS-2 PRI or ERS-2 GEC.

ERS-2 PRI are corrected for antenna elevation gain and range-spreading loss. The
terrain-induced radiometric effects and terrain distortion are not removed.

ERS-2 SAR GEC are multi-look (speckle-reduced), ground range, system-corrected
images. They are precisely located and rectified onto a map projection, but not corrected
for terrain distortion. These images are high-level products, calibrated, and corrected for
the SAR antenna pattern and range-spreading loss.

9.6.1 Estimation of the Fractional Differencing Parameter d

The LRD estimation algorithms set includes the R/S statistic, first proposed by Hurst in a
hydrological context, the log-log correlogram, the log-log plot of the sample mean,
the semivariogram, and the least-squares regression in the spectral domain.

Least-squares regression in the spectral domain is concerned with the analysis of
the asymptotic behavior of the estimated MRPSD | x | as kg tends to zero.

As mentioned in Section 9.3.5, the mean radial periodogram is usually sampled at
the Fourier frequencies k;, = %, j=1,2,...n", where n* = |"5!| and | x | denotes the
integer part of x.

To obtain the LRD parameter d, we use a linear regression algorithm and estimate the
slope of the mean radial periodogram, in a log-log plot, when the radial frequency tends
to zero. It is observed that the LRD is an asymptotic property and that the negative slope
of logi{l,,(kg)} is usually proportional to the fractional differencing parameter only in a
restricted neighborhood of the origin. This means that we must perform the linear
regression using only a certain number of the smallest Fourier frequencies [38,39].

Least-squares regression in the spectral domain was employed by Geweke and Porter-
Hudak in Ref. [38]. Ilow and Leung [5] extended their techniques and made use of a two-
step procedure to estimate the FARIMA parameters of homogeneous and isotropic sea
SAR images.

An iterative two-step analogous approach was introduced by Bertacca et al. [7,8]. In all
these papers, the d parameter was repeatedly estimated inside a loop for increasing
Fourier frequencies. The loop was terminated by a logical expression, which compared
the logarithms of the long-memory and short-memory spectral density components.
In the proximity of the origin, the logarithm of the spectral density was dominated
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by the long-memory component, so that only the Fourier frequencies for which the SRD
contribution was negligible were chosen.

There is an important difference between the 1D spectral densities introduced by llow
and Bertacca. Ilow calculated the radial PSD through the conversion of frequency points
on a square lattice from the 2D FFT to the discrete radial frequency points. The radial PSD
was obtained at frequency points, which were not equally spaced, by an angular integra-
tion and averaging of the spectral density.

Bertacca first introduced a rectangular to polar coordinates transformation of the 2D
PSD. This was obtained through a cubic interpolation of the spectral density on a polar
grid. Thus, the rapid fluctuations of the 2D periodogram were reduced before the mean
radial periodogram computation.

It is assumed (see Section 9.2.2) that the mean radial periodogram ordinates I,,.(k;,)
are approximately independent Gaussian random variables with means S,,(k;,) (the
MRPSD at the Fourier frequencies k;,). Then the average of the radial spectral densities
for ¥ ranging from 0 to 2w radians allows the variance of I,,(k;,) to be significantly
reduced.

For example, if we calculate the 2D spectral density using nonoverlapping 256 x 256
size squared blocks of data, after going into polar coordinates (with the cubic interpol-
ation), the mean radial periodogram is obtained by averaging over 256 different radial
spectral densities.

On the contrary, in Ilow’s technique, there is no interpolation and the average is
calculated over a smaller number of frequency points.

This means that the variance of the mean radial periodogram ordinates I,,,(kj,,) intro-
duced by Bertacca is significantly smaller than that obtained by Ilow. Furthermore, sup-
posing that the scattering of the random variables I,,,,(k; ,) around their means S,,,,(k; ,,) is the
effect of an additive noise, then the variance reduction is not affected by the anisotropy of
sea SAR images. Let {k; ,}i§ denote the set of the smallest Fourier frequencies to be used for
the fractional dlfferencmg parameter estimation. Experimental results (shown in Section
9.7) demonstrate that, near the origin, the ordinates log{l,,(k;.)}, represented versus
log{k; .}, are approximately the samples of a straight line with a negative slope. In addition,
the small variance of all the samples log {I,u,(kj)}, kin = 1,2,. [ > J allows the set of the
Fourier frequencies {k;,};/“f = 1 to be easily distinguished from thls log-log plot. In all that
follows, we will limit the set {k; ,,};“f to the last Fourier frequency before the lobe (the slope
increment) of the plot.

In Ref. [9], Bertacca et al. obtained good results by determining the number mg of the
Fourier frequencies to be used for the parameter d estimation from the log-log plot of the
mean radial periodogram. This method prevents the estimation of the set {k;, n} Finside a
loop and increases the computational efficiency of the proposed technique.

The FARIMA MRPSD ordinates are equal to

k: o —2d
Sur(kjn) = [2 s1n< ]2 ﬂ Sarma (kj) (9.61)

Calculating the logarithm of the above equation, we obtain
kin
log{Sur(kjn)} = —dlog [4sm ( 5 )} + log{Sarma (ki) } (9.62)

After determining {k;,}/”f and substituting the ordinates S,,(k;,) with their estimates
mr( ,n) we have
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k'n
log{Lu(kjn)} ~ —dlog [4 sin? (]Tﬂ (9.63)
The least-squares estimator of d is given by

5 (4 — #)(o; — 9)
P

Ty (9.64)
=

m

k'n MR _ R .
where vj = log{Lu(kjx)}, uj = log [4 sin® (JT)] , 0= 2; oy and # = X;mu—;
j= j=

In Section 9.7, we show the experimental results corresponding to high-resolution sea
SAR images of clean and windy sea areas, oil spill, and low-wind areas.

It is observed that considering the SAR image of a rough sea surface that shows clearly
identifiable darker zones corresponding to an oil slick (or to an oil spill) and a low-wind
area, we have [8] the following:

e These darker areas are both caused by the amplitude attenuation for the
tiny capillary and short-gravity waves contributing to the Bragg resonance
phenomenon.

¢ In the oil slick (or spill), the low amplitude of the backscattered signal is due
to the concentration of the surfactant in the water that affects only the short-
wavelength waves.

e In the low-wind area, the amplitudes of all the wind-generated waves are
reduced. In other words, the low-wind area tends to a flat sea surface.

Bertacca et al. observed that the spatial correlation of SAR subimages of low-wind areas
always decays to zero at a slower rate than that related to the oil slicks (or spills) in the
same SAR image [8]. Since lower decaying correlations are related to higher values of the
fractional differencing parameter, low-wind areas are characterized by the greatest d
value in the whole image. It is observed that oily substances determine the attenuation
of only tiny capillary and short-gravity waves contributing to the Bragg resonance
phenomenon [36]. Out of the Bragg wavelength range, the same waves are present in
oil spill and clean water areas, and experimental results show that the shapes (and the
fractional differencing parameter d) of the MRPSD of oil slick (or spill) and clean water
areas on the SAR image are very similar. On the contrary, the shapes of the mean radial
spectra differ for low-wind and windy clean water areas [8].

9.6.2 ARMA Parameter Estimation

After obtaining the fractional differencing parameter estimate d, we can write the SRD
component of the mean radial periodogram as

R k: . 2d
o) = Ssko(k) = o) 25in (5 9.69)

The square root of this function,
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hsrp(kjn) = 1/ Isrp(Kjn) (9.66)

can be defined as the short-memory frequency response vector. The vector of the ARMA
parameter estimates that fits the data, hsgp (k; ), can be obtained using different algorithms.

Ilow considered either MA or AR representation of the ARMA part. With his method, a
2D MA model, with a circular symmetric impulse response, is obtained from a 1D MA
model with a symmetric impulse response in a similar way as the 2D filter is designed in
the frequency transformation technique [40].

Bertacca considered ARMA models. He estimated the real numerator and denominator
coefficients of the transfer function by employing the classical Levi algorithm [41], whose
output was used to initialize the Gaussian Newton method that directly minimized the
mean square error. The stability of the system was ensured by using the damped Gauss—
Newton algorithm for iterative search [42].

9.6.3 FEXP Parameter Estimation

FEXP models for sea SAR images modeling and representation were first introduced by
Bertacca et al. in Ref. [9]. As observed in Ref. [19], using FEXP models leads to the
estimation of parameters in a generalized linear model.

A different approach consists of estimating the fractional differencing parameter d as
described in Section 9.6.1. The SRD component of the mean radial periodogram, Isgp (k; ),
can be calculated as in Equation 9.65.

After determining the logarithm of the data

7, y()) = 10g{8sro (ki) } = log{Iswn (ki) } 9.67)

we define the vector X = x(j) = kj,, and compute the coefficients vector n of the
polynomial p(x) that fits the data, p(x(j)) to y(j), in a least-squares sense. The SRD part of
the FEXP model is equal to

Srexp_srd (Kjn) = exp { > n(i)k}:,n} (9.68)
=0

where m denotes the order of the polynomial p(x).

It is worth noting the difference between the FMA and the polynomial FEXP models for
considering the computational costs and the number of the parameters to estimate. Using
FMA models, we calculate the square root of Isgp (kj,») = Ssrp (kj,,) and estimate the best-
fit polynomial regression of fi(k;,) = \/Iskp(kj), j = 1,...,mg on {k; ,}{2f.

Employing FEXP models, we perform a polynomial regression of
f2(k]',n) = log{\ /ISRD(kj,n)}/ j=1,...,mgon {kj,n}jl’f.

Since the logarithm generates functions much smoother than those obtained by calcu-
lating the square root of Isgp(kj,,), FEXP models give the same goodness of fit of FARIMA
models and require a reduced number of parameters.

9.7 Analysis of Sea SAR Images

In this section, we show the results obtained for an ERS-2 GEC and an ERS-2 SAR PRI
(Figure 9.2 and Figure 9.3). In fact, the results show that the geocoding process does not
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FIGURE 9.2

211

Sea ERS-2 SAR GEC acquired near the Santa Catalina and San Clemente Islands (Los Angeles, CA). (Data

provided by the European Space Agency © ESA (2002). With permission.)

affect the LRD behavior of sea SAR image spectral densities. In all that follows, figures are
represented with respect to the spatial frequency ks (in linear or logarithmic scale). The
spatial resolution of ERS-2 SAR PRI is 12.5 m for both the azimuth and the (ground) range

coordinates. The North and East axes pixel spacing is 12.5 m for ERS-2 SAR GEC.

In the calculation of the periodogram, we average spectral estimates obtained from
squared blocks of data containing 256 x 256 pixels. This square window size permits the
representation of the low-frequency spectral components that provide good estimates of

the fractional differencing parameter d. Thus, we have

Spatial resolution = 12.5(m)
1

e -1
fmax = Resolution 0.08(m ")
P
ki :7“],]'2 1,...,127, n = 256

ksj,n == kj,nfmax

(9.69)
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FIGURE 9.3
Sea ERS-2 SAR PRI acquired near the coast of Asturias region, Spain. (Data provided by the European Space
Agency © ESA (2002). With permission.)

The first image (Figure 9.2) represents a rough sea area near Santa Catalina and San
Clemente Islands (Los Angeles, USA), on the Pacific Ocean, containing a low-wind area
(ERS-2 SAR GEC orbit 34364 frame 2943). The second image (Figure 9.3) covers the coast
of the Asturias region on the Atlantic Ocean (ERS-2 SAR PRI orbit 40071 frame 2727), and
represents a rough sea surface with extended oil spill areas.

Four subimages from Figure 9.2 and Figure 9.3 are considered for this analysis. The two
subimages marked in Figure 9.2 represent a rough sea area and a low-wind area,
respectively. The two subimages marked in Figure 9.3 correspond to a rough sea
area and to an oil spill. Note that not all the considered subimages have the same
dimension. Subimages of greater dimension provide lower variance of the 2D period-
ogram. The two clean water areas contain 1024 x 1024 pixels. The low-wind area in Figure
9.2 and the oil spill in Figure 9.3 contain 512 x 512 pixels.

Using FARIMA models, we estimate the parameter d as explained in Section 9.6.1. The
estimation of the ARMA part of the spectrum is made as in Ref. [8]. First we choose
the maximum orders, Mmax and fmay, of the numerator and denominator polynomials of
the ARMA transfer function. Then we estimate the real numerator and denominator
coefficients in vectors b and a, for m and n indexes ranging from 0 t0 Mmax and Mmax,
respectively.

The estimated frequency response vector of the short memory PSD, hsgp (k; ), has been
defined in Equation 9.66 as the square root of Isgp (k; ). The ARMA transfer function is
the one that corresponds to the estimated frequency response harma (kj) for which the
RMS error between hsrp(kj,,) and harma(kj,) is the minimum among all values of (1, n).

The estimated ARMA part of the spectrum then becomes
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TABLE 9.1
Estimated FARIMA Parameters

Analyzed Image mg m n d Asrp
Asturias region sea 11 11 18 0.471 4.87
Asturias region oil spill 15 16 11 0.568 0.24
Santa Catalina sea 7 6 6 0.096 218.88
Santa Catalina low wind 11 3 14 0.423 047
& 7 2
Sarma (ki) = [harma (ki )| (9.70)

In the data processing performed wusing FARIMA models, we have used
Mmax = 20, max = 20. The FARIMA parameters estimated from the four considered sub-
images are shown in Table 9.1. The parameter Agrp, introduced by Bertacca et al. in Ref.
[8], is given by

*

n

Asgp = Y _ Isgp(kjn) /1° (9.71)
=

It depends on the strength of the backscattered signal and thus on the roughness of the
sea surface. It is observed [8] that the ratio of these parameters for the clean sea and
the oil spill SAR images is always lower than those corresponding to the clean sea and the
low-wind subimages

Asrps _ Asrps

/ - 9.72
Asrp.0s  AsrD_LwW )

Asgp.s Asgps A
From Table 9.1, we have Y —— 20.29 and A — 465.7. The parameter Asgp s assumes

low values for clean sea areas with moderate wind velocities, as we can see in Table 9.1,
for the subimage of Figure 9.3. However, the attenuation of the Bragg resonance phe-
nomenon due to the oil on the sea surface leads to the measurement of a high ratio
between Asgp s and Asgp os. In any case, for rough sea surfaces, the discrimination
between oil spill and low wind is very easy using either the LRD parameter d or the
SRD parameter Asgp. The parameter d is used together with Agrp to resolve different
darker areas corresponding to smooth sea surfaces [8]. Figure 9.4 and Figure 9.5 show the
estimated mean radial spectral densities and their FARIMA models for all the subimages
of Figure 9.2 and Figure 9.3.

Table 9.2 displays the results obtained by using an FEXP model, and estimating its
parameters in a generalized linear model of order m = 2, for the almost isotropic sea
SAR subimage shown in Figure 9.3. In Figure 9.6, we examine visually the fit of the
estimated model to the MRPSD of the sea clutter. Figure 9.7 and Figure 9.8 show
the estimated mean radial spectral densities of all the subimages of Figure 9.2 and Figure
9.3 and their FEXP models obtained by using the two-step technique described in Section
9.6.3. We notice that increasing the polynomial FEXP order allows better fits to be
obtained. To illustrate this, FEXP models of order m = 2 and m = 20 are shown in Figure
9.7 and Figure 9.8.
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FIGURE 9.4
Mean radial power spectral densities and FARIMA models corresponding to Figure 9.2.

9.7.1 Two-Dimensional Long-Memory Models for Sea SAR Image Spectra

As mentioned in Section 9.6, the 2D periodograms estimated for sea SAR images can
exhibit either isotropic or anisotropic spatial structure [8]. This depends on the SAR
system, on the directional spectra of waves, on the possible presence of oil spills or slicks,
and on the wind history parameters. fBm and FARIMA models have been used to
represent isotropic and homogeneous self-similar random fields [5,8,35,43]. Owing to
the complex nature of the surface scattering phenomenon involved in the problem and
the highly nonlinear techniques of SAR image generation, the definition of anisotropic
spectral densities models is not merely related to the sea state or wind conditions. In the
context of self-similar random fields, anisotropy can be introduced by linear spatial
transformations of isotropic fractal fields, by spatial filtering of fields with desired
characteristics, or by building intrinsically anisotropic fields as in the case of the so-called
fractional Brownian sheet [43]. Anisotropic 2D FARIMA has been introduced in Ref. [43]
as the discrete-space equivalent of a 2D fractionally differenced Gaussian noise, taking
into account the long-memory property and the directionality of the image. In that work,
Pesquet-Popescu and Lévy Véhel defined the anisotropic extension of 2D FARIMA by
multiplying its isotropic spectral density by an anisotropic part A, ,, (k, k). The function
Aq,e (ky, ky) depended on two parameters: a and ¢. The parameter ¢ € (0,2m] provided the
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FIGURE 9.5
Mean radial power spectral densities and FARIMA models corresponding to Figure 9.3.

orientation of the field. The anisotropy coefficient @ € [0,1) determined the dispersion of
the PSD around its main direction ¢.

This anisotropic model allows the directionality and the shape of the 2D PSD to be modified,
but the maximum of the PSD main lobe depends on the values assumed by the anisotropy
coefficient. Furthermore, the anisotropy of this model depends on only one parameter («).

Experimental results show that this is not sufficient to correctly represent the
anisotropy of the PSD of sea SAR images. This means the model must be changed both
to provide a better fit with the spectral densities of sea SAR images and allow the shape
and the position of the spectral density main lobes to be independently modified.

TABLE 9.2
Parameter Estimates for the FEXP Model of Order m = 2 of Figure 9.6.

Parameter Coefficient Estimates Standard Errors t-Statistics p-Values
b(0) = —2d —1.0379 0.018609 —55.775 3.5171e—089
b(1) = n(0) 2.2743 0.11393 19.962 2.1482e—040
b(2) = (1) 25.651 1.7359 14.777 4.881e—029
b(3) = n(2) —126.49 9.7813 —12.932 1.1051e—024

Note: p-Values are given for testing b(i) = 0 against the two-sided alternative b(i) # 0.
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FIGURE 9.6
Mean radial power spectral densities and FEXP model corresponding to the sea subimage of Figure 9.3.

Bertacca et al. [44] showed that the PSD of either isotropic or anisotropic sea SAR
images can be modeled by multiplying the isotropic spectral density of a 2D FARIMA by
an anisotropic part derived from the fractal model of sea surface spectra [6]. This
anisotropic component depends on seven different parameters and can be broken down
into a radial component, the omnidirectional spectrum S(ks; ,), and a spreading function G
Qim), Oim = %, i=1,2,...,m. This allows the shape, the slope, and the anisotropic
characteristics of the 2D PSD to be independently modified and a good fit with the
estimated periodogram to be obtained.

With a different approach [37], a reliable model of anisotropic PSD has been defined,
for sea SAR intensity images, by adding a 2D isotropic FEXP to an anisotropic term newly
defined starting from the fractal model of sea surface spectra [6]. However, the additive
model cannot be interpreted as an anisotropic extension of the LRD spectral models as in
Refs. [5,44].

Analyzing homogeneous and isotropic random fields leads to the estimation of iso-
tropic spectral densities. In such cases, it is better to utilize FEXP instead of FARIMA
models [9]. To illustrate this, in Figure 9.9 and Figure 9.10, we show the isotropic PSD of
the low-wind area in Figure 9.3 and the result obtained by employing a 2D isotropic
FEXP model to represent it. Figure 9.11 and Figure 9.12 compare the anisotropic PSD
estimated from a directional sea SAR image (ERS-2 SAR PRI orbit 40801 frame 2727, data
provided by the European Space Agency © ESA (2002)) with its additive model [37].
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FIGURE 9.7
Mean radial PSD and FEXP models corresponding to Figure 9.2.

In Figure 9.9 and Figure 9.10, we present results using the log scale for the z-axis. This
emphasizes the divergence of the long-memory PSD. In Figure 9.11 and Figure 9.12, to
better examine the anisotropy characteristics of the spectral densities at medium and high
frequencies, the value of the PSD at the origin has been set to zero.

9.8 Conclusions

Some self-similar and LRD processes, such as fBm, fGn, FD, and FMA or FAR models,
have been used in the literature to model the spatial correlation properties of the scatter-
ing from natural surfaces. These models have demonstrated reliable results in the analysis
and modeling of high-definition sea SAR images under the assumption of homogeneity
and isotropy.

Unfortunately, a wind speed greater than 7 m/sec is often present on sea surfaces and
this can produce directionality and nonhomogeneity of the corresponding SAR images.
Furthermore, the mean radial spectral density (MRPSD) of sea SAR images always
shows an LRD behavior and a slope that changes with increasing frequency. This
means that:
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Mean radial PSD and FEXP models corresponding to Figure 9.3.

¢ When analyzing mean radial spectral densities (1D), fBm and FD models, which
do not represent both the long and short-memory behaviors, cannot provide a
good fit.

e When analyzing nonhomogeneous and nonisotropic sea SAR images, due to
their directionality, suitable 2D LRD spectral models, corresponding to nonho-
mogeneous and anisotropic random fields, must be defined to better fit their
power spectral densities.

Here we have presented a brief review of the most important LRD models as well as an
explanation of the techniques of analysis and discrimination of sea SAR images corre-
sponding to oil slicks (or spills) and low-wind areas.

In the context of MRPSD modeling, we have shown that FEXP models improve the
goodness of fit of FARIMA models and ensure lower computational costs. In particular,
we have used Bertacca’s noniterative technique for estimating the LRD parameter d.

The result obtained by using this algorithm has been compared with that correspond-
ing to the estimation of parameters in a generalized linear model. The two estimates of
the parameter d, corresponding to the sea SAR subimage of Figure 9.3, are

dy =0471, dy = —@ = 0.518, from Table 9.1 and Table 9.2, respectively. This demon-
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FIGURE 9.9
The isotropic spectral density estimated from the low-wind area of Figure 9.2.

strates the reliability of the noniterative algorithm: it prevents the estimation of the set
{k/-,n}]'@1 inside a loop and increases the computational efficiency.
We notice that the ratios of the FD parameters for oil spill and clean sea subimages are

always lower than those corresponding to low-wind and clean sea areas. From Table 9.1,
we have that

dos 0568
ds 0471 1.206
diw  0.423
W 4,406
ds — 0.096 (9.73)

As observed by Bertacca et al. [8], the discrimination among clean water, oil spill, and
low-wind areas is very easy by using either the long-memory parameter d or the short-
memory parameter Aggp, in the case of rough sea surfaces. The two parameters must be
used together only to resolve different darker areas corresponding to smooth sea surfaces.

Furthermore, using large square window sizes in the estimation of the SAR image PSD
allows low-frequency spectral components to be represented and good estimates of
the fractional differencing parameter to be obtained. Therefore, the proposed technique
can be better used to distinguish oil spills or slicks with large extent from low-wind areas.

In the context of modeling of 2D spectral densities, we have shown that the anisotropic
models introduced in the literature by linear spatial transformations of isotropic fractal
fields, by spatial filtering of fields with desired characteristics, or by building intrinsically
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The 2D isotropic FEXP model (m = 20) of the PSD in Figure 9.9.
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FIGURE 9.11
Anisotropic PSD estimate from a directional sea SAR image.
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FIGURE 9.12
Anisotropic 2D model of the PSD of Figure 9.11.

anisotropic fields, are not suitable for representing the spectral densities of sea SAR
images. In this chapter, two anisotropic spectral models have been presented. They
have been obtained by either adding or multiplying a 2D isotropic FEXP to an anisotropic
term defined starting from the fractal model of sea surface spectra [6,37]. To illustrate this,
we have shown an anisotropic sea SAR image PSD in Figure 9.11, and its spectral model,
in Figure 9.12, obtained by adding a 2D FEXP model of order m = 20 to an anisotropic
fractal spectral component.
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10.1 Introduction

The amount of image data that is received from satellites is constantly increasing. For
example, nearly 3 terabytes of data are being sent to Earth by NASA's satellites every day
[1]. Advances in satellite technology and computing power have enabled the study of
multi-modal, multi-spectral, multi-resolution, and multi-temporal data sets for applica-
tions such as urban land-use monitoring and management, GIS and mapping, environ-
mental change, site suitability, and agricultural and ecological studies. Automatic content
extraction, classification, and content-based retrieval have become highly desired goals
for developing intelligent systems for effective and efficient processing of remotely
sensed data sets.

There is extensive literature on classification of remotely sensed imagery using para-
metric or nonparametric statistical or structural techniques with many different features
[2]. Most of the previous approaches try to solve the content extraction problem by
building pixel-based classification and retrieval models using spectral and textural fea-
tures. However, a recent study [3] that investigated classification accuracies reported in
the last 15 years showed that there has not been any significant improvement in the

*This work was supported by the TUBITAK CAREER Grant 104E074 and European Commission Sixth
Framework Programme Marie Curie International Reintegration Grant MIRG-CT-2005-017504.
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performance of classification methodologies over this period. The reason behind this
problem is the large semantic gap between the low-level features used for classification
and the high-level expectations and scenarios required by the users. This semantic gap
makes a human expert’s involvement and interpretation in the final analysis inevitable,
and this makes processing of data in large remote-sensing archives practically impossible.
Therefore, practical accessibility of large remotely sensed data archives is currently
limited to queries on geographical coordinates, time of acquisition, sensor type, and
acquisition mode [4].

The commonly used statistical classifiers model image content using distributions
of pixels in spectral or other feature domains by assuming that similar land-cover
and land-use structures will cluster together and behave similarly in these fea-
ture spaces. However, the assumptions for distribution models often do not hold
for different kinds of data. Even when nonlinear tools such as neural networks
or multi-classifier systems are used, the use of only pixel-based data often fails
expectations.

An important element of understanding an image is the spatial information because
complex land structures usually contain many pixels that have different feature charac-
teristics. Remote-sensing experts also use spatial information to interpret the land-cover
because pixels alone do not give much information about image content. Image segmen-
tation techniques [5] automatically group neighboring pixels into contiguous regions
based on similarity criteria on the pixels” properties. Even though image segmentation
has been heavily studied in image processing and computer vision fields, and despite the
early efforts [6] that use spatial information for classification of remotely sensed imagery,
segmentation algorithms have only recently started receiving emphasis in remote-sensing
image analysis. Examples of image segmentation in the remote-sensing literature include
region growing [7] and Markov random field models [8] for segmentation of natural
scenes, hierarchical segmentation for image mining [9], region growing for object-level
change detection [10] and fuzzy rule-based classification [11], and boundary delineation
of agricultural fields [12].

We model spatial information by segmenting images into spatially contiguous regions
and classifying these regions according to the statistics of their spectral and textural
properties and shape features. To develop segmentation algorithms that group pixels
into regions, first, we use nonparametric Bayesian classifiers that create probabilistic links
between low-level image features and high-level user-defined semantic land-cover and
land-use labels. Pixel-level characterization provides classification details for each pixel
with automatic fusion of its spectral, textural, and other ancillary attributes [13]. Then,
each resulting pixel-level classification map is converted into a set of contiguous regions
using an iterative split-and-merge algorithm [13,14] and mathematical morphology. Fol-
lowing this segmentation process, resulting regions are modeled using the statistical
summaries of their spectral and textural properties along with shape features that are
computed from region polygon boundaries [14,15]. Finally, nonparametric Bayesian
classifiers are used with these region-level features that describe properties shared by
groups of pixels to classify these groups into land-cover and land-use categories defined
by the user.

The rest of the chapter is organized as follows. An overview of feature data used for
modeling pixels is given in Section 10.2. Bayesian classifiers used for classifying these
pixels are described in Section 10.3. Algorithms for segmentation of regions are presented
in Section 10.4. Feature data used for modeling resulting regions are described in Section
10.5. Application of the Bayesian classifiers to region-level classification is described in
Section 10.6. Experiments are presented in Section 10.7 and conclusions are provided
in Section 10.8.
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10.2 Pixel Feature Extraction

The algorithms presented in this chapter will be illustrated using three different data sets:

e DC Mall: Hyperspectral digital image collection experiment (HYDICE) image
with 1,280 x 307 pixels and 191 spectral bands corresponding to an airborne data
flightline over the Washington DC Mall area.

The DC Mall data set includes seven land-cover and land-use classes: roof, street,
path, grass, trees, water, and shadow. A thematic map with ground-truth labels for
8,079 pixels was supplied with the original data [2]. We used this ground truth
for testing and separately labeled 35,289 pixels for training. Details are given in

Figure 10.1.

(a) DC Mall data

(b) Training map

Roof (5106)
Street (5068)
Path (1144)
Grass (8545)
Trees (5078)
Water (9157)

Shadow (1191)

(c) Test map

Path (175)

Roof (3834)

Street (416)

Grass (1928)

Trees (405)

Water (1224)

Shadow (97)

FIGURE 10.1 (See color insert following page 240.)

False color image of the DC Mall data set (generated using the bands 63, 52, and 36) and the corresponding ground-
truth maps for training and testing. The number of pixels for each class is shown in parenthesis in the legend.
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e Centre: Digital airborne imaging spectrometer (DAIS) and reflective optics sys-
tem imaging spectrometer (ROSIS) data with 1,096 x 715 pixels and 102 spectral
bands corresponding to the city center in Pavia, Italy.

The Centre data set includes nine land-cover and land-use classes: water, trees,
meadows, self-blocking bricks, bare soil, asphalt, bitumen, tiles, and shadow. The
thematic maps for ground truth contain 7,456 pixels for training and 148,152 pixels
for testing. Details are given in Figure 10.2.

e University: DAIS and ROSIS data with 610 x 340 pixels and 103 spectral bands
corresponding to a scene over the University of Pavia, Italy.

The University data set also includes nine land-cover and land-use classes: asphalt,
meadows, gravel, trees, (painted) metal sheets, bare soil, bitumen, self-blocking
bricks, and shadow. The thematic maps for ground truth contain 3,921 pixels for
training and 42,776 pixels for testing. Details are given in Figure 10.3.

(b) Training map

(a) Centre data

= Water (824)

Trees (820)

Meadows (824)
Self-blocking bricks (808)
Bare soil (820)

Asphalt (816)

Bitumen (808)

Tiles (1260)

Shadow (476)

(c) Test map

Water (65971)

Trees (7598)

Meadows (3090)
Self-blocking bricks (2685)
Bare soil (6584)

Asphalt (9248)

Bitumen (7287)

ITiIes (42826)

| Shadow (2863)

FIGURE 10.2 (See color insert following page 240.)

False color image of the Centre data set (generated using the bands 68, 30, and 2) and the corresponding ground-
truth maps for training and testing. The number of pixels for each class is shown in parenthesis in the legend.
(A missing vertical section in the middle was removed.)
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(b) Training map

(a) University data

Asphalt (548)

Meadows (540)

Gravel (392)

Trees (524)

(Painted) metal shoots (265)
Bare soil (532)

Bitumen (375)

Self-blocking bricks (514)
Shadow (231)

Asphalt (6631)

Meadows (18649)

Gravel (2099)

Trees (3064)

(Painted) metal shoots (1345)
Bare soil (5029)

Bitumen (1330)

Self-blocking bricks (3682)
Shadow (947)

FIGURE 10.3 (See color insert following page 240.)

False color image of the University data set (generated using the bands 68, 30, and 2) and the corresponding
ground-truth maps for training and testing. The number of pixels for each class is shown in parenthesis in
the legend.

The Bayesian classification framework that will be described in the rest of the chapter
supports fusion of multiple feature representations such as spectral values, textural
features, and ancillary data such as elevation from DEM. In the rest of the chapter,
pixel-level characterization consists of spectral and textural properties of pixels that are
extracted as described below.

To simplify computations and to avoid the curse of dimensionality during the analysis
of hyperspectral data, we apply Fisher’s linear discriminant analysis (LDA) [16] that finds
a projection to a new set of bases that best separate the data in a least-square sense. The
resulting number of bands for each data set is one less than the number of classes in the
ground truth.

We also apply principal components analysis (PCA) [16] that finds a projection to a new
set of bases that best represent the data in a least-square sense. Then, we retain the top ten
principal components instead of the large number of hyperspectral bands. In addition,
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we extract Gabor texture features [17] by filtering the first principal component image
with Gabor kernels at different scales and orientations shown in Figure 10.4. We use
kernels rotated by nmw/4, n = 0,...,3, at four scales resulting in feature vectors of length
16. In previous work [13], we observed that, in general, microtexture analysis algorithms
like Gabor features smooth noisy areas and become useful for modeling neighborhoods of
pixels by distinguishing areas that may have similar spectral responses but have different
spatial structures.

Finally, each feature component is normalized by linear scaling to unit variance [18] as

. Xx—
X = L
g

(10.1)

where x is the original feature value, x is the normalized value, u is the sample mean,
and o is the sample standard deviation of that feature, so that the features with larger

s=1,0=0° s=1,0=45° s=1,0=90° s=1,0=135°

s=2,0=90° s=2,0=135°

§=3,0=0° s=3,0=45° s=3,0=90° s=3,0=135°

s=2,0=0°

"

s=4,0=0° s=4,0=45° s=4,0=90° s=4,0=135°

FIGURE 10.4
Gabor texture filters at different scales (s = 1,...,4) and orientations (0 € {0°45°90°,135°}). Each filter is
approximated using 31x31 pixels.
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FIGURE 10.5

Pixel feature examples for the DC Mall data set. From left to right: the first LDA band, the first PCA band, Gabor
features for 90° orientation at the first scale, Gabor features for 0° orientation at the third scale, and Gabor
features for 45° orientation at the fourth scale. Histogram equalization was applied to all images for better
visualization.

ranges do not bias the results. Examples for pixel-level features are shown in Figure 10.5
through Figure 10.7.

10.3 Pixel Classification

We use Bayesian classifiers to create subjective class definitions that are described in
terms of easily computable objective attributes such as spectral values, texture, and
ancillary data [13]. The Bayesian framework is a probabilistic tool to combine information
from multiple sources in terms of conditional and prior probabilities. Assume there are k
class labels, wy, ..., wy, defined by the user. Let x4, ..., x,, be the attributes computed for a
pixel. The goal is to find the most probable label for that pixel given a particular set of
values of these attributes. The degree of association between the pixel and class w; can be
computed using the posterior probability
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FIGURE 10.6

Pixel feature examples for the Centre data set. From left to right, first row: the first LDA band, the first PCA band,
and Gabor features for 135° orientation at the first scale; second row: Gabor features for 45° orientation at the
third scale, Gabor features for 45° orientation at the fourth scale, and Gabor features for 135° orientation at the
fourth scale. Histogram equalization was applied to all images for better visualization.

pwj | x1, ..., Xn)
_ P, X |wp(wy)
p(x1, -, Xm)
_ pix1, -, X | wj)p(w))
Copxa, e X | w)p(w) + plra, -, X | —w)p(—w;)
_ p(@) ITi~ p(xi | w)
o p) T pi [ w) + p(=w)) [T plxi | —wy) (10.2)

under the conditional independence assumption. The conditional independence assump-
tion simplifies learning because the parameters for each attribute model p(x; | w;) can be
estimated separately. Therefore, user interaction is only required for the labeling of pixels
as positive (w;) or negative (~w;) examples for a particular class under training. Models for
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FIGURE 10.7

Pixel feature examples for the University data set. From left to right, first row: the first LDA band, the first PCA
band, and Gabor features for 45° orientation at the first scale; second row: Gabor features for 45° orientation at
the third scale, Gabor features for 135° orientation at the third scale, and Gabor features for 135° orientation at the
fourth scale. Histogram equalization was applied to all images for better visualization.

different classes are learned separately from the corresponding positive and negative
examples. Then, the predicted class becomes the one with the largest posterior probability
and the pixel is assigned the class label

w; = argj:rrl‘l,a?‘?ikp(wj|x1, e, Xm) (10.3)

We use discrete variables and a nonparametric model in the Bayesian framework where
continuous features are converted to discrete attribute values using the unsupervised k-
means clustering algorithm for vector quantization. The number of clusters (quantization
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levels) is empirically chosen for each feature. (An alternative is to use a parametric
distribution assumption, for example, Gaussian, for each individual continuous feature
but these parametric assumptions do not always hold.) Schroder et al. [19] used similar
classifiers to retrieve images from remote-sensing archives by approximating the prob-
abilities of images belonging to different classes using pixel-level probabilities. In the
following, we describe learning of the models for p(x; | w;) using the positive training
examples for the jth class label. Learning of p(x; | — wj) is done the same way using the
negative examples.

For a particular class, let each discrete variable x; have r; possible values (states) with
probabilities

plxi = z[6;) = 0. >0 (10.4)

wherez € {1,...,r;} and 6; = {6;.}7’_ is the set of parameters for the ith attribute model.
This corresponds to a multinomial distribution. Since maximum likelihood estimates can
give unreliable results when the sample is small and the number of parameters is large,
we use the Bayes estimate of 6;, that can be computed as the expected value of the
posterior distribution.

We can choose any prior for 6; in the computation of the posterior distribution but there
is a big advantage in using conjugate priors. A conjugate prior is one which, when
multiplied with the direct probability, gives a posterior probability having the same
functional form as the prior, thus allowing the posterior to be used as a prior in further
computations [20]. The conjugate prior for the multinomial distribution is the Dirichlet
distribution [21]. Geiger and Heckerman [22] showed that if all allowed states of the
variables are possible (i.e., 6;; > 0) and if certain parameter independence assumptions
hold, then a Dirichlet distribution is indeed the only possible choice for the prior.

Given the Dirichlet prior p(6;) = Dir(6; | a1, .. ., a;,), where a;; are positive constants, the
posterior distribution of 6; can be computed using the Bayes rule as

' _ p(D]6)p(6;)
p(0; | D) = T D)

= Dir(6; |1 + Ni, ..., air, + Niy,) (10.5)

where D is the training sample and N, is the number of cases in D in which x;=z. Then,
the Bayes estimate for 6;, can be found by taking the conditional expected value

ai; + Ni;

10.6
a; + Nj ( )

0; = Ey,1p)[0iz] =

where a;=> J_1 a;; and N;=>7_1 Np.

An intuitive choice for the hyperparameters «;y, ..., a;,, of the Dirichlet distribution is
Laplace’s uniform prior [23] that assumes all 7; states to be equally probable (a;; =1 Vz €
{1,...,r}), which results in the Bayes estimate

- 1 + N
0i; = 10.7
Con+ N (107)

Laplace’s prior is regarded to be a safe choice when the distribution of the source is
unknown and the number of possible states r; is fixed and known [24].
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Given the current state of the classifier that was trained using the prior information and
the sample D, we can easily update the parameters when new data D’ is available. The
new posterior distribution for 6; becomes

. n _ P(D'|8:)p(6i| D)
p(6;i|D D) = (D' D) (10.8)

With the Dirichlet priors and the posterior distribution for p(6; | D) given in Equation 10.5,
the updated posterior distribution becomes

P(Bi | D, D/) = Dir(Oi |ai1 + Ni + N;l, ce, Oy eri + Nz/’r,-) (10.9)

where N, is the number of cases in D’ in which x;=z. Hence, updating the classifier
parameters involves only updating the counts in the estimates for 6;..

The Bayesian classifiers that are learned from examples as described above are used to
compute probability maps for all land-cover and land-use classes and assign each pixel to
one of these classes using the maximum a posteriori probability (MAP) rule given in
Equation 10.3. Example probability maps are shown in Figure 10.8 through Figure 10.10.

FIGURE 10.8
Pixel-level probability maps for different classes of the DC Mall data set. From left to right: roof, street, path,
trees, shadow. Brighter values in the map show pixels with high probability of belonging to that class.
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FIGURE 10.9

Pixel-level probability maps for different classes of the Centre data set. From left to right, first row: trees, self-
blocking bricks, asphalt; second row: bitumen, tiles, shadow. Brighter values in the map show pixels with high
probability of belonging to that class.

10.4 Region Segmentation

Image segmentation is used to group pixels that belong to the same structure with the
goal of delineating each individual structure as an individual region. In previous work
[25], we used an automatic segmentation algorithm that breaks an image into many small
regions and merges them by minimizing an energy functional that trades off the similarity
of regions against the length of their shared boundaries. We have also recently experi-
mented with several segmentation algorithms from the computer vision literature. Algo-
rithms that are based on graph clustering [26], mode seeking [27], and classification [28]
have been reported to be successful in moderately sized color images with relatively
homogeneous structures. However, we could not apply these techniques successfully to
our data sets because the huge amount of data in hyperspectral images made proces-
sing infeasible due to both memory and computational requirements, and the detailed
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FIGURE 10.10

Pixel-level probability maps for different classes of the University data set. From left to right, first row: asphalt,
meadows, trees; second row: metal sheets, self-blocking bricks, shadow. Brighter values in the map show pixels
with high probability of belonging to that class.

structure in high-resolution remotely sensed imagery prevented the use of sampling that
has been often used to reduce the computational requirements of these techniques.

The segmentation approach we have used in this work consists of smoothing filters and
mathematical morphology. The input to the algorithm includes the probability maps for
all classes, where each pixel is assigned either to one of these classes or to the reject class
for probabilities smaller than a threshold (the latter type of pixels are initially marked as
background). Because pixel-based classification ignores spatial correlations, the initial
segmentation may contain isolated pixels with labels different from those of their
neighbors. We use an iterative split-and-merge algorithm [13] to convert this intermediate
step into contiguous regions as follows:

1. Merge pixels with identical class labels to find the initial set of regions and mark
these regions as foreground.
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2. Mark regions with areas smaller than a threshold as background using con-
nected components analysis [5].

3. Use region growing to iteratively assign background pixels to the foreground
regions by placing a window at each background pixel and assigning it to the
class that occurs the most in its neighborhood.

This procedure corresponds to a spatial smoothing of the clustering results. We further
process the resulting regions using mathematical morphology operators [5] to automat-
ically divide large regions into more compact subregions as follows [13]:

1. Find individual regions using connected components analysis for each class.
2. For all regions, compute the erosion transform [5] and repeat:

— Threshold erosion transform at steps of 3 pixels in every iteration
— Find connected components of the thresholded image
— Select subregions that have an area smaller than a threshold
— Dilate these subregions to restore the effects of erosion
— Mark these subregions in the output image by masking the dilation using the
original image
— Until no more sub-regions are found
3. Merge the residues of previous iterations to their smallest neighbors.

The merging and splitting process is illustrated in Figure 10.11. The probability of each
region belonging to a land-cover or land-use class can be estimated by propagating class
labels from pixels to regions. Let X={xy,..., x,,} be the set of pixels that are merged to
form a region. Let w; and p(w; | x;) be the class label and its posterior probability, respect-
ively, assigned to pixel x; by the classifier. The probability p(w;|x € X) that a pixel in the

merged region belongs to the class w; can be computed as

p(wj|x € X)
B p(wj, x € X) B p(wj, x € X)
opxeX) Z’lep(wt, x € X)
_ erx p(w]'/ x) _ erX P(wj ‘ X)P(x)
Zle > xex (W, X) Zf:l > vex Pwr [ X)p(x)
Ex{IxEX(x)p(wj | x)} 1
= = - (wj | xi)
S Edllex(@)p(r |x)} 7 ,-;p wilx (10.10)

where I4(-) is the indicator function associated with the set A. Each region in the final
segmentation is assigned labels with probabilities using Equation 10.10.

10.5 Region Feature Extraction

Region-level representations include properties shared by groups of pixels obtained
through region segmentation. The regions are modeled using the statistical summaries
of their spectral and textural properties along with shape features that are computed from
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(a) A large (b) More (c) A large connected region (d) More compact sub-
connected compact sub- formed by merging pixels regions after splitting the
region formed regions after labeled as tiled in Centre data region in (c).

by merging splitting the

pixels labeled region in (a)

as streetin DC
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FIGURE 10.11 (See color insert following page 240.)
Examples for the region segmentation process. The iterative algorithm that uses mathematical morphology
operators is used to split a large connected region into more compact subregions.

region polygon boundaries. The statistical summary for a region is computed as the
means and standard deviations of features of the pixels in that region. Multi-dimensional
histograms also provide pixel feature distributions within individual regions. The shape
properties [5] of a region correspond to its

* Aarea
e Orientation of the region’s major axis with respect to the x axis

e Eccentricity (ratio of the distance between the foci to the length of the major axis;
for example, a circle is an ellipse with zero eccentricity)

¢ Euler number (1 minus the number of holes in the region)

« Solidity (ratio of the area to the convex area)

» Extent (ratio of the area to the area of the bounding box)

e Spatial variances along the x and vy axes

e Spatial variances along the region’s principal (major and minor) axes
* Resulting in a feature vector of length 10
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10.6 Region Classification

In the remote-sensing literature, image classification is usually done by using pixel
features as input to classifiers such as minimum distance, maximum likelihood, neural
networks, or decision trees. However, large within-class variations and small between-
class variations of these features at the pixel level and the lack of spatial information limit
the accuracy of these classifiers.

In this work, we perform final classification using region-level information. To use the
Bayesian classifiers that were described in Section 10.3, different region-based features
such as statistics and shape features are independently converted to discrete random
variables using the k-means algorithm for vector quantization. In particular, for each
region, we obtain four values from

¢ Clustering of the statistics of the LDA bands (6 bands for DC Mall data, 8 bands
for Centre and University data)

* Clustering of the statistics of the 10 PCA bands
e Clustering of the statistics of the 16 Gabor bands
e Clustering of the 10 shape features

In the next section, we evaluate the performance of these new features for classifying
regions (and the corresponding pixels) into land-cover and land-use categories defined
by the user.

10.7 Experiments

Performances of the features and the algorithms described in the previous sections were
evaluated both quantitatively and qualitatively. First, pixel-level features (LDA, PCA, and
Gabor) were extracted and normalized for all three data sets as described in Section 10.2.
The ground-truth maps shown in Figure 10.1 through Figure 10.3 were used to divide the
data into independent training and test sets. Then, the k-means algorithm was used to
cluster (quantize) the continuous features and convert them to discrete attribute values,
and Bayesian classifiers with discrete nonparametric models were trained using these
attributes and the training examples as described in Section 10.3. The value of k was set to
25 empirically for all data sets. Example probability maps for some of the classes were
given in Figure 10.8 through Figure 10.10. Confusion matrices, shown in Table 10.1
through Table 10.3, were computed using the test ground truth for all data sets.

Next, the iterative split-and-merge algorithm described in Section 10.4 was used to
convert the pixel-level classification results into contiguous regions. The neighborhood
size for region growing was set to 3 x 3. The minimum area threshold in the segmentation
process was set to 5 pixels. After the region-level features (LDA, PCA, and Gabor
statistics, and shape features) were computed and normalized for all resulting regions
as described in Section 10.5, they were also clustered (quantized) and converted to
discrete values. The value of k was set to 25 again for all data sets. Then, Bayesian
classifiers were trained using the training ground truth as described in Section 10.6, and
were applied to the test data to produce the confusion matrices shown in Table 10.4
through Table 10.6.
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TABLE 10.1
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Confusion Matrix for Pixel-Level Classification of the DC Mall Data Set (Testing Subset) Using LDA,
PCA, and Gabor Features

Assigned

True Roof Street Path Grass Trees Water Shadow Total % Agree
Roof 3771 49 12 0 1 0 1 3834 98.3568
Street 0 412 0 0 0 0 4 416 99.0385
Path 0 0 175 0 0 0 0 175 100.0000
Grass 0 0 0 1926 2 0 0 1928 99.8963
Trees 0 0 0 0 405 0 0 405 100.0000
Water 0 0 0 0 0 1223 1 1224 99.9183
Shadow 0 4 0 0 0 0 93 97 95.8763
Total 3771 465 187 1926 408 1223 99 8079 99.0840
TABLE 10.2

Confusion Matrix for Pixel-Level Classification of the Centre Data Set (Testing Subset) Using LDA,
PCA, and Gabor Features

Assigned
Bare %

True Water Trees Meadows Bricks Soil Asphalt Bitumen Tiles Shadow Total Agree
Water 65,877 0 1 0 1 7 0 0 85 65,971 99.8575
Trees 1 6420 1094 5 0 45 4 0 29 7598 84.4959
Meadows 0 349 2718 0 22 1 0 0 0 3090 87.9612
Bricks 0 0 0 2238 221 139 87 0 0 2685 83.3520
Bare soil 0 9 110 1026 5186 191 59 3 0 6584 78.7667
Asphalt 4 0 0 317 30 7897 239 5 756 9248 85.3914
Bitumen 4 0 1 253 22 884 6061 9 53 7287 83.1755
Tiles 0 1 0 150 85 437 116 41,826 211 42,826 97.6650
Shadow 12 0 0 3 0 477 0 0 2371 2863 82.8152
Total 65,898 6779 3924 3992 5567 10,078 6566 41,843 3505 148,152 94.8985
TABLE 10.3

Confusion Matrix for Pixel-Level Classification of the University Data Set (Testing Subset) Using
LDA, PCA, and Gabor Features

Assigned
Metal Bare %
True Asphalt Meadows Gravel Trees Sheets Soil Bitumen Bricks Shadow Total Agree
Asphalt 4045 38 391 39 1 105 1050 875 87 6631 61.0014
Meadows 21 14,708 14 691 0 3132 11 71 1 18,649 78.8675
Gravel 91 14 1466 0 0 3 19 506 0 2099 69.8428
Trees 5 76 1 2927 0 40 1 2 12 3064 95.5287
Metal sheets 0 2 0 1 1341 0 0 1 0 1345 99.7026
Bare soil 34 1032 7 38 20 3745 32 119 2 5029 74.4681
Bitumen 424 1 7 1 0 1 829 67 0 1330 62.3308
Bricks 382 45 959 2 1 87 141 2064 1 3682 56.0565
Shadow 22 0 0 0 0 0 0 2 923 947 97.4657
Total 5024 15,916 2845 3699 1363 7113 2083 3707 1026 42,776 74.9205
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TABLE 10.4

Confusion Matrix for Region-Level Classification of the DC Mall Data Set (Testing Subset) Using
LDA, PCA, and Gabor Statistics, and Shape Features

Assigned

True Roof Street Path Grass Trees Water Shadow Total % Agree
Roof 3814 11 5 0 0 1 3 3834 99.4784
Street 0 414 0 0 0 0 2 416 99.5192
Path 0 0 175 0 0 0 0 175 100.0000
Grass 0 0 0 1928 0 0 0 1928 100.0000
Trees 0 0 0 0 405 0 0 405 100.0000
Water 0 1 0 0 0 1223 0 1224 99.9183
Shadow 1 2 0 0 0 0 94 97 96.9072
Total 3815 428 180 1928 405 1224 99 8079 99.678
TABLE 10.5

Confusion Matrix for Region-Level Classification of the Centre Data Set (Testing Subset) Using LDA,
PCA, and Gabor Statistics, and Shape Features

Assigned
Bare

True Water Trees Meadows Bricks Soil Asphalt Bitumen Tiles Shadow Total % Agree
Water 65,803 0 0 0 0 0 0 0 168 65,971  99.7453
Trees 0 6209 1282 28 22 11 5 0 41 7598  81.7189
Meadows 0 138 2942 0 10 0 0 0 0 3090 95.2104
Bricks 0 0 1 2247 173 31 233 0 0 2685 83.6872
Bare soil 1 4 59 257 6139 11 102 0 11 6584 93.2412
Asphalt 0 1 2 37 4 8669 163 0 372 9248  93.7392
Bitumen 0 0 0 24 3 726 6506 0 28 7287  89.2823
Tiles 0 0 0 39 13 220 2 42,380 172 42,826  98.9586
Shadow 38 0 2 2 0 341 12 0 2468 2863  86.2033
Total 65,842 6352 4288 2634 6364 10,009 7023 42,380 3260 148,152 96.7675
TABLE 10.6

Confusion Matrix for Region-Level Classification of the University Data Set (Testing Subset) Using
LDA, PCA, and Gabor Statistics, and Shape Features

Assigned
Metal Bare
True Asphalt Meadows Gravel Trees Sheets Soil Bitumen Bricks Shadow Total % Agree
Asphalt 4620 7 281 4 0 52 344 1171 152 6631 69.6727
Meadows 8 17,246 0 1242 0 19 6 7 121 18,649 92.4768
Gravel 9 5 1360 2 0 0 0 723 0 2099 64.7928
Trees 39 37 0 2941 0 4 13 14 16 3064 95.9856
Metal sheets 0 0 0 0 1344 0 0 1 0 1345 99.9257
Bare soil 0 991 0 5 0 4014 0 19 0 5029 79.8171
Bitumen 162 0 0 0 0 0 1033 135 0 1330  77.6692
Bricks 248 13 596 33 5 21 125 2635 6 3682 71.5644
Shadow 16 0 0 0 1 0 0 1 929 947  98.0993

Total 5102 18,299 2237 4227 1350 4110 1521 4706 1224 42,776  84.4445
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TABLE 10.7

Summary of Classification Accuracies Using the Pixel-Level and Region-Level Bayesian Classifiers
and the Quadratic Gaussian Classifier

DC Mall Centre University
Pixel-level Bayesian 99.0840 94.8985 74.9205
Region-level Bayesian 99.6782 96.7675 84.4445
Quadratic Gaussian 99.3811 93.9677 81.2792

Finally, comparative experiments were done by training and evaluating traditional
maximum likelihood classifiers with the multi-variate Gaussian with full covariance
matrix assumption for each class (quadratic Gaussian classifier) using the same training
and test ground-truth data. The classification performances of all three classifiers (pixel-
level Bayesian, region-level Bayesian, quadratic Gaussian) are summarized in Table 10.7.
For qualitative comparison, the classification maps for all classifiers for all data sets were
computed as shown in Figure 10.12 through Figure 10.14.

The results show that the proposed region-level features and Bayesian classifiers
performed better than the traditional maximum likelihood classifier with the Gaussian
density assumption for all data sets with respect to the ground-truth maps available.
Using texture features, which model spatial neighborhoods of pixels, in addition to the
spectral-based ones improved the performances of all classifiers. Using the Gabor filters
at the third and fourth scales (corresponding to eight features) improved the results the
most. (The confusion matrices presented show the performances of using these features
instead of the original 16.) The reason for this is the high spatial image resolution where
filters with a larger coverage include mixed effects from multiple structures within a
pixel’s neighborhood.

Using region-level information gave the most significant improvement for the University
data set. The performances of pixel-level classifiers for DC Mall and Centre data sets using
LDA- and PCA-based spectral and Gabor-based textural features were already quite high.
In all cases, region-level classification performed better than pixel-level classifiers.

One important observation to note is that even though the accuracies of all classifiers
seem quite high, some misclassified areas can still be found in the classification maps for
all images. This is especially apparent in the results of pixel-level classifiers where many
isolated pixels that are not covered by test ground-truth maps (e.g., the upper part of the
DC Mall data, tiles on the left of the Centre data, many areas in the University data) were
assigned wrong class labels because of the lack of spatial information and, hence,
the context. The same phenomenon can be observed in many other results published in
the literature. A more detailed ground truth is necessary for a more reliable evaluation of
classifiers for high-resolution imagery. We believe that there is still a large margin for
improvement in the performance of classification techniques for data received from state-
of-the-art satellites.

10.8 Conclusions

We have presented an approach for classification of remotely sensed imagery using
spatial techniques. First, pixel-level spectral and textural features were extracted
and used for classification with nonparametric Bayesian classifiers. Next, an iterative
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(a) Pixel-level Bayesian
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(b) Region-level Bayesian (c) Quadratic Gaussian

FIGURE 10.12 (See color insert following page 240.)
Final classification maps with the Bayesian pixel-and region-level classifiers and the quadratic Gaussian classi-
fier for the DC Mall data set. Class color codes were listed in Figure 10.1.

split-and-merge algorithm was used to convert the pixel-level classification maps into
contiguous regions. Then, spectral and textural statistics and shape features extracted
from these regions were used with similar Bayesian classifiers to compute the final
classification maps.

Comparative quantitative and qualitative evaluation using traditional maximum like-
lihood Gaussian classifiers in experiments with three different data sets with ground truth
showed that the proposed region-level features and Bayesian classifiers performed better
than the traditional pixel-level classification techniques. Even though the numerical
results already look quite impressive, we believe that selection of the most discriminative
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(a) Pixel-level Bayesian (b) Region-level Bayesian (c) Quadratic Gaussian

s J

FIGURE 10.13 (See color insert following page 240.)
Final classification maps with the Bayesian pixel-and region-level classifiers and the quadratic Gaussian classi-
fier for the Centre data set. Class color codes were listed in Figure 10.2.

subset of features and better segmentation of regions will bring further improvements in
classification accuracy. We are also in the process of gathering ground-truth data with a
larger coverage for better evaluation of classification techniques for images from high-
resolution satellites.

(a) Pixel-level Bayesian (b) Region-level Bayesian (c) Quadratic Gaussian
g et o ¥ e

FIGURE 10.14 (See color insert following page 240.)
Final classification maps with the Bayesian pixel- and region-level classifiers and the quadratic Gaussian
classifier for the University data set. Class color codes were listed in Figure 10.3.
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11.1 Introduction

Earth observation is currently developing more rapidly than ever before. During the last
decade the number of satellites has been growing steadily, and the coverage of the Earth
in space, time, and the electromagnetic spectrum is increasing correspondingly fast.

The accuracy in classifying a scene can be increased by using images from several
sensors operating at different wavelengths of the electromagnetic spectrum. The inter-
action between the electromagnetic radiation and the earth’s surface is characterized by
certain properties at different frequencies of electromagnetic energy. Sensors with differ-
ent wavelengths provide complementary information about the surface. In addition to
image data, prior information about the scene might be available in the form of map data
from geographic information systems (GIS). The merging of multi-source data can create
a more consistent interpretation of the scene compared to an interpretation based on data
from a single sensor.

This development opens up for a potential significant change in the approach of
analysis of earth observation data. Traditionally, analysis of such data has been by
means of analysis of a single satellite image. The emerging exceptionally good coverage
in space, time, and the spectrum opens for analysis of time series of data, combining
different sensor types, combining imagery of different scales, and better integration with
ancillary data and models. Thus, data fusion to combine data from several sources is
becoming increasingly more important in many remote-sensing applications.

This paper provides a tutorial on data fusion for remote-sensing applications. The main
focus is on methods for multi-source image classification, but separate sections on multi-
sensor image registration, multi-scale classification, and multi-temporal image classifica-
tion are also included. The remainder of this chapter is organized in the following
manner: in Section 11.2 the “multi”’ concept in remote sensing is presented. Multi-sensor
data registration is treated in Section 11.3. Classification strategies for multi-sensor appli-
cations are discussed in Section 11.4. Multi-temporal image classification is discussed in
Section 11.5, while multi-scale approaches are discussed in Section 11.6. Concluding
remarks are given in Section 11.7.

11.2 The ““Multi”” Concept in Remote Sensing

The variety of different sensors already available or being planned creates a number of
possibilities for data fusion to provide better capabilities for scene interpretation. This is
referred to as the “multi” concept in remote sensing. The “multi”’ concept includes multi-
temporal, multi-spectral or multi-frequency, multi-polarization, multi-scale, and multi-
sensor image analysis. In addition to the concepts discussed here, imaging using multiple
incidence angles can also provide additional information [1,2].

11.2.1 The Multi-Spectral or Multi-Frequency Aspect

The measured backscatter values for an area vary with the wavelength band. A land-use
category will give different image signals depending on the frequency used, and by using
different frequencies, a spectral signature that characterizes the land-use category can
be found. A description of the scattering mechanisms for optical sensors can be found in
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Ref. [3], while Ref. [4] contains a thorough discussion of the backscattering mechanisms in
the microwave region. Multi-spectral optical sensors have demonstrated this effect for
a substantial number of applications for several decades; they are now followed by
high-spatial-resolution multi-spectral sensors such as Ikonos and Quickbird, and
by hyperspectral sensors from satellite platforms (e.g., Hyperion).

11.2.2 The Multi-Temporal Aspect

The term multi-temporal refers to the repeated imaging of an area over a period. By
analyzing an area through time, it is possible to develop interpretation techniques based
on an object’s temporal variations and to discriminate different pattern classes accord-
ingly. Multi-temporal imagery allows, the study of the variation of backscatter of different
areas with time, weather conditions, and seasons. It also allows monitoring of processes
that change over time.

The principal advantage of multi-temporal analysis is the increased amount of infor-
mation for the study area. The information provided for a single image is, for certain
applications, not sufficient to properly distinguish between the desired pattern
classes. This limitation can sometimes be resolved by examining the pattern of temporal
changes in the spectral signature of an object. This is particularly important for vegetation
applications. Multi-temporal image analysis is discussed in more detail in Section 11.5.

11.2.3 The Multi-Polarization Aspect

The multi-polarization aspect is related to microwave image data. The polarization of an
electromagnetic wave refers to the orientation of the electric field during propagation. A
review of the theory and features of polarization is given in Refs. [5,6].

11.2.4 The Multi-Sensor Aspect

With an increasing number of operational and experimental satellites, information about
a phenomenon can be captured using different types of sensors.

Fusion of images from different sensors requires some additional preprocessing and
poses certain difficulties that are not solved in traditional image classifiers. Each sensor
has its own characteristics, and the image captured usually contains various artifacts that
should be corrected or removed. The images also need to be geometrically corrected and
co-registered. Because the multi-sensor images often are not acquired on the same data,
the multi-temporal nature of the data must also often be explained.

Figure 11.1 shows a simple visualization of two synthetic aperture radar (SAR) images
from an oil spill in the Baltic sea, imaged by the ENVISAT ASAR sensor and the Radarsat
SAR sensor. The images were taken a few hours apart. During this time, the oil slick has
drifted to some extent, and it has become more irregular in shape.

11.2.5 Other Sources of Spatial Data

The preceding sections have addressed spatial data in the form of digital images obtained
from remote-sensing satellites. For most regions, additional information is available in the
form of various kinds of maps, for example, topography, ground cover, elevation, and so
on. Frequently, maps contain spatial information not obtainable from a single remotely
sensed image. Such maps represent a valuable information resource in addition to the
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FIGURE 11.1 (See color insert following page 240.)
Example of multi-sensor visualization of an oil spill in the Baltic sea created by combining an ENVISAT ASAR
image with a Radarsat SAR image taken a few hours later.

satellite images. To integrate map information with a remotely sensed image, the map
must be available in digital form, for example, in a GIS system.

11.3 Multi-Sensor Data Registration

A prerequisite for data fusion is that the data are co-registered, and geometrically and
radiometrically corrected. Data co-registration can be simple if the data are georeferenced.
In that case, the co-registration consists merely of resampling the images to a common
map projection. However, an image-matching step is often necessary to obtain subpixel
accuracy in matching. Complicating factors for multi-sensor data are the different ap-
pearances of the same object imaged by different sensors, and nonrigid changes in object
position between multi-temporal images.



Data Fusion for Remote-Sensing Applications 253

The image resampling can be done at various stages of the image interpretation
process. Resampling an image affects the spatial statistics of the neighboring pixel,
which is of importance for many radar image feature extraction methods that might use
speckle statistics or texture. When fusing a radar image with other data sources, a solution
might be to transform the other data sources to the geometry of the radar image. When
fusing a multi-temporal radar image, an alternative might be to use images from the same
image mode of the sensor, for example, only ascending scenes with a given incidence
angle range. If this is not possible and the spatial information from the original geo-
metry is important, the data can be fused and resampling done after classification by the
sensor-specific classifiers.

An image-matching step may be necessary to achieve subpixel accuracy in the co-
registration even if the data are georeferenced. A survey of image registration methods
is given by Zitova and Flusser [7]. A full image registration process generally consists of
four steps:

e Feature extraction. This is the step where regions, edges, and contours can be used
to represent tie-points in the set of images to be matched are extracted. This is a
crucial step, as the registration accuracy can be no better than what is achieved
for the tie-points.

Feature extraction can be grouped into area-based methods [8,9], feature-based methods
[10-12], and hybrid approaches [7]. In area-based methods, the gray levels of the images
are used directly for matching, often by statistical comparison of pixel values in small
windows, and they are best suited for images from the same or highly similar sensors.
Feature-based methods will be application-dependent, as the type of features to use as tie
points needs to be tailored to the application. Features can be extracted either from the
spatial domain (edges, lines, regions, intersections, and so on) or from the frequency
domain (e.g., wavelet features). Spatial features can perform well for matching data from
heterogeneous sensors, for example, optical and radar images. Hybrid approaches use
both area-based and feature-based techniques by combining both a correlation-based
matching with an edge-based approach, and they are useful in matching data from
heterogeneous sensors.

e Feature matching. In this step, the correspondence between the tie-points or
features in the sensed image and the reference image is found. Area-based
methods for feature extraction use correlation, Fourier-transform methods, or
optical flow [13]. Feature-based methods use the equivalence between correl-
ation in the spatial domain and multiplication in the Fourier domain to perform
matching in the Fourier domain [10,11]. Correlation-based methods are best
suited for data from similar sensors. The optical flow approach involves estima-
tion of the relative motion between two images and is a broad approach. It
is commonly used in video analysis, but only a few studies have used it in
remote-sensing applications [29,30].

e Transformation selection concerns the choice of mapping function and estimation
of its parameters based on the established feature correspondence. The affine
transform model is commonly used for remote-sensing applications, where the
images normally are preprocessed for geometrical correction—a step that justi-
fies the use of affine transforms.

e Image resampling. In this step, the image is transformed by means of the map-
ping function. Image values in no-integer coordinates are computed by the
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appropriate interpolation technique. Normally, either a nearest neighbor or a
bilinear interpolation is used. Nearest neighbor interpolation is applicable when
no new pixel values should be introduced. Bilinear interpolation is often a good
trade-off between accuracy and computational complexity compared to cubic or
higher order interpolation.

11.4 Multi-Sensor Image Classification

The literature on data fusion in the computer vision and machine intelligence domains is
substantial. For an extensive review of data fusion, we recommend the book by Abidi and
Gonzalez [16]. Multi-sensor architectures, sensor management, and designing sensor
setup are also thoroughly discussed in Ref. [17].

11.4.1 A General Introduction to Multi-Sensor Data Fusion
for Remote-Sensing Applications

Fusion can be performed at the signal, pixel, feature, or decision level of representation (see
Figure 11.2). In signal-based fusion, signals from different sensors are combined to create
a new signal with a better signal-to-noise ratio than the original signals [18]. Techniques
for signal-level data fusion typically involve classic detection and estimation methods
[19]. If the data are noncommensurate, they must be fused at a higher level.

Pixel-based fusion consists of merging information from different images on a pixel-by-
pixel basis to improve the performance of image processing tasks such as segmentation
[20]. Feature-based fusion consists of merging features extracted from different signals or
images [21]. In feature-level fusion, features are extracted from multiple sensor observa-
tions, then combined into a concatenated feature vector, and classified using a standard
classifier. Symbol-level or decision-level fusion consists of merging information at a
higher level of abstraction. Based on the data from each single sensor, a preliminary
classification is performed. Fusion then consists of combining the outputs from the
preliminary classifications.

The main approaches to data fusion in the remote-sensing literature are statistical
methods [22-25], Dempster—Shafer theory [26-28], and neural networks [22,29]. We will
discuss each of these approaches in the following sections. The best level and method-
ology for a given remote-sensing application depends on several factors: the complexity
of the classification problem, the available data set, and the goal of the analysis.

11.4.2 Decision-Level Data Fusion for Remote-Sensing Applications

In the general multi-sensor fusion case, we have a set of images X'---X” from P sensors.
The class labels of the scene are denoted C. The Bayesian approach is to assign each pixel
to the class that maximizes the posterior probabilities P(C | Xj,..., Xp)

P, ..., XP|O)P(C)

1 P
P(CXY,..., XP) = P X7 (11.1)

where P(C) is the prior model for the class labels.
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For decision-level fusion, the following conditional independence assumption is used:
Pxt, ..., XP|0) = P(XYC)--- P(XP|C)

This assumption means that the measurements from the different sensors are considered
to be conditionally independent.

11.4.3 Combination Schemes for Combining Classifier Outputs

In the data fusion literature [30], various alternative methods have been proposed for
combining the outputs from the sensor-specific classifiers by weighting the influence of
each sensor. This is termed consensus theory. The weighting schemes can be linear,
logarithmic, or of a more general form (see Figure 11.3).

The simplest choice, the linear opinion pool (LOP), is given by

P
LOP(X!, ..., X") =) " P(XP|C)™ (11.2)
p=1
The logarithmic opinion pool (LOGP) is given by

[)
LOGP(X', ..., X") = [[ P(x"|C)™ (11.3)
p=1

which is equivalent to the Bayesian combination if the weights A, are equal. This weight-
ing scheme contradicts the statistical formulation in which the sensor’s uncertainty is
supposed to be modeled by the variance of the probability density function.

The weights are supposed to represent the sensor’s reliability. The weights can be
selected by heuristic methods based on their goodness [3] by weighting a sensor’s
influence by a factor proportional to its overall classification accuracy on the training
data set. An alternative approach for a linear combination pool is to use a genetic
algorithm [32].

An approach using a neural net to optimize the weights is presented in Ref. [30]. Yet
another possibility is to choose the weights in such a way that they not only weigh the
individual data sources but also the classes within the data sources [33].

P(wlx)
Classifier for
data source 1

® Label
° f(X2) ——
®

Classifier for
data source p

FIGURE 11.3
Schematic view of weighting the outputs from sensor-specific classifiers in decision-level fusion.
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Benediktsson et al. [30,31] use a multi-layer perceptron (MLP) neural network to combine
the class-conditional probability densities P(X” | C). This allows a more flexible, nonlinear
combination scheme. They compare the classification accuracy using MLPs to LOPs and
LOGPs, and find that the neural net combination performs best.

Benediktsson and Sveinsson [34] provide a comparison of different weighting schemes
for an LOP and LOGP, genetic algorithm with and without pruning, parallel consensus
neural nets, and conjugate gradient backpropagation (CGBP) nets on a single multi-
source data set. The best results were achieved by using a CGBP net to optimize the
weights in an LOGP.

A study that contradicts the weighting of different sources is found in Ref. [35]. In this
study, three different data sets (optical and radar) were merged using the LOGP, and the
weights were varied between 0 and 1. Best results for all three data sets were found by
using equal weights.

11.4.4 Statistical Multi-Source Classification

Statistical methods for fusion of remotely sensed data can be divided into four categories:
the augmented vector approach, stratification, probabilistic relaxation, and extended
statistical fusion. In the augmented vector approach, data from different sources are
concatenated as if they were measurements from a single sensor. This is the most common
approach for many application-oriented applications of multi-source classification, be-
cause no special software is needed. This is an example of pixel-level fusion.

Such a classifier is difficult to use when the data cannot be modeled with a common
probability density function, or when the data set includes ancillary data (e.g., from a GIS
system). The fused data vector is then classified using ordinary single-source classifiers
[36]. Stratification has been used to incorporate ancillary GIS data in the classification
process. The GIS data are stratified into categories and then a spectral model for each of
these categories is used [37].

Richards et al. [38] extended the methods used for spatially contextual classification
based on probabilistic relaxation to incorporate ancillary data. The methods based on
extended statistical fusion [10,43] were derived by extending the concepts used for
classification of single-sensor data. Each data source is considered independently and
the classification results are fused using weighted linear combinations.

By using a statistical classifier one often assumes that the data have a multi-variate
Gaussian distribution. Recent developments in statistical classifiers based on regression
theory include choices of nonlinear classifiers [11-13,18-20,26,28,33,38,39-56]. For a com-
parison of neural nets and regression-based nonlinear classifiers, see Ref. [57].

11.4.5 Neural Nets for Multi-Source Classification

Many multi-sensor studies have used neural nets because no specific assumptions about
the underlying probability densities are needed [40,58]. A drawback of neural nets in this
respect is that they act like a black box in that the user cannot control the usage of different
data sources. It is also difficult to explicitly use a spatial model for neighboring pixels (but
one can extend the input vector from measurements from a single pixel to measurements
from neighboring pixels). Guan et al. [41] utilized contextual information by using a
network of neural networks with which they built a quadratic regularizer. Another
drawback is that specifying a neural network architecture involves specifying a large
number of parameters. A classification experiment should take care in choosing them
and apply different configurations, making the complete training process very time
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Network architecture for decision-level fusion using neural networks.

consuming [52,58]. Hybrid approaches combining statistical methods and neural
networks for data fusion have also been proposed [30]. Benediktsson et al. [30] apply a
statistical model to each individual source and use neural nets to reach a consensus
decision. Most applications involving a neural net use an MLP or radial basis function
network, but other neural network architectures can be used [59-61].

Neural nets for data fusion can be applied both at the pixel, feature, and decision level.
For pixel- and feature-level fusion a single neural net is used to classify the joint feature
vector or pixel measurement vector. For decision-level fusion, a network combination like
the one outlined in Figure 11.4 is often used [29]. An MLP neural net is first used to
classify the images from each source separately. Then, the outputs from the sensor-
specific nets are fused and weighted in a fusion network.

11.4.6 A Closer Look at Dempster-Shafer Evidence Theory for Data Fusion

Dempster—Shafer theory of evidence provides a representation of multi-source data using
two central concepts: plausibility and belief. Mathematical evidence theory was first
introduced by Dempster in the 1960s, and later extended by Shafer [62].

A good introduction to Dempster-Shafer evidence theory for remote sensing data
fusion is given in Ref. [28].

Plausibility (Pls) and belief (Bel) are derived from a mass function m, which is defined
on the [0,1] interval. The belief and plausibility functions for an element A are defined as

Bel(A) = > m(B) (11.4)
BCA
Pls(A) = Y m(B). (11.5)

BNA#0
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They are sometimes referred to as lower and upper probability functions. The belief value
of hypothesis A can be interpreted as the minimum uncertainty value about A, and its
plausibility as the maximum uncertainty [28].

Evidence from p different sources is combined by combining the mass functions
my- - -m, by

DAL | i
If K # 1, m(A) = =20 qBV_ ?( S (B

where K = } g N-- “NB,=o [I1<i<p miB)) is interpreted as a measure of conflict between
the different sources.

The decision rule used to combine the evidence from each sensor varies from different
applications, either maximum of plausibility or maximum of belief (with variations). The
performance of Dempster-Shafer theory for data fusion does however depend on the
methods used to compute the mass functions. Lee et al. [20] assign nonzero mass function
values only to the single classes, whereas Hegarat-Mascle et al. [28] propose two strategies
for assigning mass function values to sets of classes according to the membership for a
pixel for these classes.

The concepts of evidence theory belong to a different school than Bayesian multi-sensor
models. Researchers coming from one school often have a tendency to dislike modeling
used in the alternative theory. Not many neutral comparisons of these two approaches
exist. The main advantage of this approach is its robustness in the method by which
information from several heterogeneous sources is combined. A disadvantage is the
underlying basic assumption that the evidence from different sources is independent.
According to Ref. [43], Bayesian theory assumes that imprecision about uncertainty in the
measurements is assumed to be zero and uncertainty about an event is only measured by
the probability. The author disagrees with this by pointing out that in Bayesian modeling,
uncertainty about the measurements can be modeled in the priors. Priors of this kind are
not always used, however. Priors in a Bayesian model can also be used to model
spatial context and temporal class development. It might be argued that the Dempster—
Shafer theory can be more appropriate for a high number of heterogeneous sources.
However, most papers on data fusion for remote sensing consider two or maximum
three different sources.

11.4.7 Contextual Methods for Data Fusion

Remote-sensing data have an inherent spatial nature. To account for this, contextual
information can be incorporated in the interpretation process. Basically, the effect of
context in an image-labeling problem is that when a pixel is considered in isolation, it
may provide incomplete information about the desired characteristics. By considering the
pixel in context with other measurements, more complete information might be derived.

Only a limited set of studies have involved spatially contextual multi-source classifica-
tion. Richards et al. [38] extended the methods used for spatial contextual classification
based on probabilistic relaxation to incorporate ancillary data. Binaghi et al. [63] presented
a knowledge-based framework for contextual classification based on fuzzy set theory. Wan
and Fraser [61] used multiple self-organizing maps for contextual classification. Le
Hégarat-Mascle et al. [28] combined the use of a Markov random field model with the
Dempster-Shafer theory. Smits and Dellepiane [64] used a multi-channel
image segmentation method based on Markov random fields with adaptive neighbor-
hoods. Markov random fields have also been used for data fusion in other application
domains [65,66].
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11.4.8 Using Markov Random Fields to Incorporate Ancillary Data

Schistad Solberg et al. [67,68] used a Markov random field model to include map data into
the fusion. In this framework, the task is to estimate the class labels of the scene C given
the image data X and the map data M (from a previous survey):

P(C|X, M) = P(X|C, M)P(C)

with respect to C.

The spatial context between neighboring pixels in the scene is modeled in P(C) using
the common Ising model. By using the equivalence between Markov random fields and
Gibbs distribution

P() = exp~U(")

where U is called the energy function and Z is a constant; the task of maximizing
P(C|X,M) is equivalent to minimizing the sum

P
u= Z udata(i) + uspatial, map
i=1

Uspatial is the common Ising model:

Uspatial = Bs Y _ 1(ci, ck)

keN

and

umap =Bu Z t(ci|mk)

keM

my is the class assigned to the pixel in the map, and #(c;|my) is the probability of a class
transition from class my to class c;. This kind of model can also be used for multi-temporal
classification [67].

11.4.9 A Summary of Data Fusion Architectures

Table 11.1 gives a schematic view on different fusion architectures applied to remote-
sensing data.

11.5 Multi-Temporal Image Classification

For most applications where multi-source data are involved, it is not likely that all the
images are acquired at the same time. When the temporal aspect is involved, the classi-
fication methodology must handle changes in pattern classes between the image acquisi-
tions, and possibly also use different classes.
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TABLE 11.1

A Summary of Data Fusion Architectures

Pixel-level fusion

Advantages Simple. No special classifier software needed.
Correlation between sources utilized.
Well suited for change detection.

Limitations Assumes that the data can be modeled using a common probability density function.
Source reliability cannot be modeled.

Feature-level fusion

Advantages Simple. No special classifier software needed.
Sensor-specific features give advantage over pixel-based fusion.
Well suited for change detection.

Limitations Assumes that the data can be modeled using a common probability density function.
Source reliability cannot be modeled.

Decision-level fusion
Advantages Suited for data with different probability densities.
Source-specific reliabilities can be modeled.
Prior information about the source combination can be modeled.
Limitations Special software often needed.

To find the best classification strategy for a multi-temporal data set, it is useful to
consider the goal of the analysis and the complexity of the multi-temporal image data to
be used. Multi-temporal image classification can be applied for different purposes:

* Monitor and identify specific changes. If the goal is to monitor changes, multi-
temporal data are required either in the form of a combination of existing
maps and new satellite imagery or as a set of satellite images. For identifying
changes, different fusion levels can be considered. Numerous methods for

TABLE 11.2

A Summary of Decision-Level Fusion Strategies

Statistical multi-sensor classifiers
Advantages Good control over the process.
Prior knowledge can be included if the model is adapted to the application.
Inclusion of ancillary data simple using a Markov random field approach.
Limitations Assumes a particular probability density function.

Dempster—Shafer multi-sensor classifiers

Advantages Useful for representation of heterogeneous sources.
Inclusion of ancillary data simple.
Well suited to model a high number of sources.

Limitations Performance depends on selected mass functions.
Not many comparisons with other approaches.

Neural net multi-sensor classifiers

Advantages No assumption about probability densities needed.
Sensor-specific weights can easily be estimated.
Suited for heterogeneous sources.

Limitations The user has little control over the fusion process and how different sources are used.
Involves a large number of parameters and a risk of overfitting.

Hybrid multi-sensor classifiers
Advantages Can combine the best of statistical and neural net or Dempster-Shafer approaches.
Limitations More complex to use.
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change detection exist, ranging from pixel-level to decision-level fusion.
Examples of pixel-level change detection are classical unsupervised approaches
like image math, image regression, and principal component analysis of a
multi-temporal vector of spectral measurements or derived feature vectors
like normalized vegetation indexes. In this paper, we will not discuss in detail
these well-established unsupervised methods. Decision-level change detection
includes postclassification comparisons, direct multi-date classification, and
more sophisticated classifiers.

o Improved quality in discriminating between a set of classes. Sometimes, parts of an
area might be covered by clouds, and a multi-temporal image set is needed to
map all areas. For microwave images, the signature depends on temperature and
soil moisture content, and several images might be necessary to obtain good
coverage of all regions in an area as two classes can have different mechanisms
affecting their signature. For this kind of application, a data fusion model
that takes source reliability weighting into account should be considered. An
example concerning vegetation classification in a series of SAR images is shown
in Figure 11.5.

e Discriminate between classes based on their temporal signature development. By ana-
lyzing an area through time and studying how the spectral signature changes, it
is possible to discriminate between classes that are not separable on a single

FIGURE 11.5
Multi-temporal image from 13 different dates during August-December 1991 for agricultural sites in Norway.
The ability to identify ploughing activity in a SAR image depends on the soil moisture content at the given date.
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image. Consider for example vegetation mapping. Based on a single image, we
might be able to discriminate between deciduous and conifer trees, but not
between different kinds of conifer or deciduous. By studying how the spectral
signature varies during the growth season, we might also be able to discriminate
between different vegetation species.

It is also relevant to consider the available data set. How many images can be included in
the analysis? Most studies use bi-temporal data sets, which are easy to obtain. Obtaining
longer time series of images can sometimes be difficult due to sensor repeat cycles and
weather limitations. In Northern Europe, cloud coverage is a serious limitation for many
applications of temporal trajectory analysis. Obtaining long time series tends to be easier
for low- and medium-resolution images from satellites with frequent passes.

A principal decision in multi-temporal image analysis is whether the images are to be
combined on the pixel level or the decision level. Pixel-level fusion consists of combining
the multi-temporal images into a joint data set and performing the classification based on
all data at the same time. In decision-level fusion, a classification is first performed for
each time, and then the individual decisions are combined to reach a consensus decision.
If no changes in the spectral signatures of the objects to be studied have occurred between
the image acquisitions, then this is very similar to classifier combination [31].

11.5.1 Multi-Temporal Classifiers

In the following, we describe the main approaches for multi-temporal classification. The
methods utilize temporal correlation in different ways. Temporal feature correlation means
that the correlation between the pixel measurements or feature vectors at different times
is modeled. Temporal class correlation means that the correlation between the class labels of
a given pixel at different times is modeled.

11.5.1.1 Direct Multi-Date Classification

In direct compound or stacked vector classification, the multi-temporal data set is merged
at the pixel level into one vector of measurements, followed by classification using a
traditional classifier. This is a simple approach that utilizes temporal feature correlation.
However, the approach might not be suited when some of the images are of lower quality
due to noise. An example of this classification strategy is to use multiple self-organizing
map (MSOM) [69] as a classifier for compound bi-temporal images.

11.5.1.2 Cascade Classifiers

Swain [70] presented the initial work on using cascade classifiers. In a cascade-classifier
approach the temporal class correlation between multi-temporal images is utilized in a
recursive manner. To find a class label for a pixel at time #,, the conditional probability for
observing class w given the images x; and x, is modeled as

P(w|x1, Xz)

Classification was performed using a maximum likelihood classifier. In several papers by
Bruzzone and co-authors [71,72] the use of cascade classifiers has been extended to
unsupervised classification using multiple classifiers (combining both maximum likeli-
hood classifiers and radial basis function neural nets).
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11.5.1.3 Markov Chain and Markov Random Field Classifiers

Schistad Solberg et al. [67] describe a method for classification of multi-source and multi-
temporal images where the temporal changes of classes are modeled using Markov chains
with transition probabilities. This approach utilizes temporal class correlation. In the Mar-
kov random field model presented in Ref. [25], class transitions are modeled in terms of
Markov chains of possible class changes and specific energy functions are used to combine
temporal information with multi-source measurements, and ancillary data. Bruzzone and
Prieto [73] use a similar framework for unsupervised multi-temporal classification.

11.5.1.4 Approaches Based on Characterizing the Temporal Signature

Several papers have studied changes in vegetation parameters (for a review see Ref. [74]). In
Refs. [50,75] the temporal signatures of classes are modeled using Fourier series (using
temporal feature correlation). Not many approaches have integrated phenological models
for the expected development of vegetation parameters during the growth season. Aurdal etal.
[76] model the phenological evolution of mountain vegetation using hidden Markov models.
The different vegetation classes can be in one of a predefined set of states related to their
phenological development, and classifying a pixel consists of selecting the class that has the
highest probability of producing a given series of observations. The performance of this model
is compared to a compound maximum likelihood approach and found to give comparable
results for a single scene, but more robust when testing and training on different images.

11.5.1.5 Other Decision-Level Approaches to Multi-Temporal Classification

Jeon and Landgrebe [46] developed a spatio-temporal classifier utilizing both the temporal
and the spatial context of the image data. Khazenie and Crawford [47] proposed a method
for contextual classification using both spatial and temporal correlation of data. In this
approach, the feature vectors are modeled as resulting from a class-dependent process and
a contaminating noise process, and the noise is correlated in both space and time.
Middelkoop and Janssen [49] presented a knowledge-based classifier, which used land-
cover data from preceding years. An approach to decision-level change detection using
evidence theory is given in Ref. [43].
A summary of approaches for multi-temporal image classifiers is given in Table 11.3.

11.6 Multi-Scale Image Classification

Most of the approaches to multi-sensor image classification do not treat the multi-scale
aspect of the input data. The most common approach is to resample all the images to be
fused to a common pixel resolution.

In other domains of science, much work on combining data sources at different
resolutions exists, for example, in epidemiology [77], in the estimation of hydraulic
conductivity for characterizing groundwater flow [78], and in the estimation of environ-
mental components [44]. These approaches are mainly for situations where the aim is to
estimate an underlying continuous variable.

The remote-sensing literature contains many examples of multi-scale and multi-sensor
data visualization. Many multi-spectral sensors, such as SPOT XS or Ikonos, provide a
combination of multi-spectral band and a panchromatic band of a higher resolution.
Several methods for visualizing such multi-scale data sets have been proposed, and
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TABLE 11.3

A Discussion of Multi-Temporal Classifiers

Direct multi-date classifier
Advantages Simple. Temporal feature correlation between image measurements utilized.
Limitations Is restricted to pixel-level fusion.
Not suited for data sets containing noisy images.
Cascade classifiers
Advantages Temporal correlation of class labels considered.
Information about special class transitions can be modeled.

Limitations Special software needed.

Markov chain and MRF classifiers

Advantages Spatial and temporal correlation of class labels considered.
Information about special class transitions can be modeled.

Limitations Special software needed.

Temporal signature trajectory approaches
Advantages Can discriminate between classes not separable at a single point in time.
Can be used either at feature level or at decision level.
Decision-level approaches allow flexible modeling.
Limitations Feature-level approaches can be sensitive to noise.
A time series of images needed (can be difficult to get more than bi-temporal).

they are often based on overlaying a multi-spectral image on the panchromatic image
using different colors. We will not describe such techniques in detail, but refer the reader
to surveys like [51,55,79]. Van der Meer [80] studied the effect of multi-sensor image
fusion in terms of information content for visual interpretation, and concluded that
image fusion aiming at improving the visual content and interpretability was more
successful for homogeneous data than for heteorogeneous data.

For classification problems, Puyou-Lascassies [54] and Zhukov et al. [81] considered
unmixing of low-resolution data by using class label information obtained from classifi-
cation of high-resolution data. The unmixing is performed through several sequential
steps, but no formal model for the complete data set is derived. Price [53] proposed
unmixing by relating the correlation between low-resolution data and high-resolution
data resampled to low resolution, to correlation between high-resolution data and low-
resolution data resampled to high resolution. The possibility of mixed pixels was not
taken into account.

In Ref. [82], separate classifications were performed based on data from each resolution.
The resulting resolution-dependent probabilities were averaged over the resolutions.

Multi-resolution tree models are sometimes used for multi-scale analysis (see, e.g., Ref.
[48]). Such models yield a multi-scale representation through a quad tree, in which each
pixel at a given resolution is decomposed into four child pixels at higher resolution, which
are correlated. This gives a model where the correlation between neighbor pixels depends
on the pixel locations in an arbitrary (i.e., not problem-related) manner.

The multi-scale model presented in Ref. [83] is based on the concept of a reference
resolution and is developed in a Bayesian framework [84]. The reference resolution
corresponds to the highest resolution present in the data set. For each pixel of the input
image at the reference resolution it is assumed that there is an underlying discrete class.
The observed pixel values are modeled conditionally on the classes. The properties of the
class label image are described through an a priori model. Markov random fields have
been selected for this purpose. Data at coarser resolutions are modeled as mixed pixels,
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TABLE 11.4

A Discussion of Multi-Scale Classifiers

Resampling combined with single-scale classifier
Advantages Simple. Works well enough for homogeneous regions.
Limitations Can fail in identifying small or detailed structures.

Classifier with explicit multi-scale model
Advantages Can give increased performance for small or detailed structures.
Limitations More complex software needed.

Not necessary for homogeneous regions.

that is, the observations are allowed to include contributions from several distinct classes.
In this way it is possible to exploit spectrally richer images at lower resolutions to obtain
more accurate classification results at the reference level, without smoothing the results as
much as if we simply oversample the low-resolution data to the reference resolution prior
to the analysis.

Methods that use a model for the relationship between the multi-scale data might offer
advantages compared to simple resampling both in terms of increased classifica-
tion accuracy and being able to describe relationships between variables measured at
different scales. This can provide tools to predict high-resolution properties from coarser
resolution properties. Of particular concern in the establishment of statistical relation-
ships is the quantification of what is lost in precision at various resolutions and the
associated uncertainty.

The potential of using multi-scale classifiers will also depend on the level of detail needed
for the application, and might be related to the typical size of the structures one wants to
identify in the images. Even simple resampling of the coarsest resolution to the finest
resolution, followed by classification using a multi-sensor classifier, can help improve the
classification result. The gain obtained by using a classifier that explicitly models the data
at different scales depends not only on the set of classes used but also on the regions used
to train and test the classifier. For scenes with a high level of detail, for example, in urban
scenes, the performance gain might be large. However, it depends also on how the
classifier performance is evaluated. If the regions used for testing the classifier are well
inside homogeneous regions and not close to other classes, the difference in performance
in terms of overall classification accuracy might not be large, but visual inspection of the
level of detail in the classified images can reveal the higher level of detail.

A summary of multi-scale classification approaches is given in Table 11.4.

11.7 Concluding Remarks

A number of different approaches for data fusion in remote-sensing applications have
been presented in the literature. A prerequisite for data fusion is that the data are co-
registered and geometrically and radiometrically corrected.

In general, there is no consensus on which multi-source or multi-temporal classification
approach works best. Different studies and comparisons report different results. There is
still a need for a better understanding on which methods are most suited to different
applications types, and also broader comparison studies. The best level and methodology
for a given remote-sensing application depends on several factors: the complexity of the
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classification problem, the available data set, the number of sensors involved, and the goal
of the analysis.

Some guidelines for selecting the methodology and architecture for a given fusion task
are given below.

11.7.1 Fusion Level

Decision-level fusion gives best control and allows weighting the influence of each sensor.
Pixel-level fusion can be suited for simple analysis, for example, fast unsupervised change
detection.

11.7.2 Selecting a Multi-Sensor Classifier

If decision-level fusion is selected, three main approaches for fusion should be consid-
ered: the statistical approach, neural networks, or evidence theory. A hybrid approach
can also be used to combine these approaches. If the sources are believed to provide data
of different quality, weighting schemes for consensus combination of the sensor-specific
classifiers should be considered.

11.7.3 Selecting a Multi-Temporal Classifier

To find the best classification strategy for a multi-temporal data set, the complexity of the
class separation problem must be considered in light of the available data set. If the
classes are difficult to separate, it might be necessary to use methods for characterizing
the temporal trajectory of signatures. For pixel-level classification of multi-temporal
imagery, the direct multi-date classification approach can be used. If specific knowledge
about certain types of changes needs to be modeled, Markov chain and Markov random
field approaches or cascade classifiers should be used.

11.7.4 Approaches for Multi-Scale Data

Multi-scale images can either be resampled to a common resolution or a classifier with
implicit modeling of the relationship between the different scales can be used. For
classification problems involving small or detailed structures (e.g., urban areas) or heteor-
ogeneous sources, the latter is recommended.
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12.1 Introduction

In this chapter, we introduce the Hermite transform (HT) as an efficient tool for remote-
sensing image processing applications. The HT is an image representation model that
mimics some of the more important properties of human visual perception, namely the
local orientation analysis and the Gaussian derivative model of early vision. We limit our
discussion to the cases of noise reduction and image fusion. However many different
applications can be tackled within the scheme of direct-inverse HT.

It is generally acknowledged that visual perception models must involve two major
processing stages: (1) initial measurements and (2) high-level interpretation. Fleet and
Jepson [1] pointed out that the early measurement is a rich encoding of image structure in
terms of generic properties from which structures that are more complex are easily
detected and analyzed. Such measurement processes should be image-independent and
require no previous or concurrent interpretation. Unfortunately, it is not known what
primitives are necessary and sufficient for interpretation or even identification of mean-
ingful features. However, we know that, for image processing purposes, linear operators
that exhibit special kind of symmetries related to translation, rotation, and magnification
are of particular interest. A family of generic neighborhood operators fulfilling these
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requirements is that formed by the so-called Gaussian derivatives [2]. These operators
have long been used in computer vision for feature extraction [3,4], and are relevant in
visual system modeling [5]. Formal integration of these operators is achieved in the HT
introduced first by Martens [6,7], and recently reformulated as a multi-scale image
representation model for local orientation analysis [8,9]. This transform can take many
alternative forms corresponding to different ways of coding local orientations in the
image.

Young showed that Gaussian derivatives model the measured receptive field data
more accurately than the Gabor functions do [10]. Like the receptive fields, both Gabor
functions and Gaussian derivatives are spatially local and consist of alternating excitatory
and inhibitory regions within a decaying envelope. However, the Gaussian derivative
analysis is found to be more efficient because it takes advantage of the fact that Gaussian
derivatives comprise an orthogonal basis if they belong to the same point of analysis.
Gaussian derivatives can be interpreted as local generic operators in a scale-space repre-
sentation described by the isotropic diffusion equation [2]. In a related work, the Gauss-
ian derivatives have been interpreted as the product of Hermite polynomials and a
Gaussian window [6], where windowed images are decomposed into a set of Hermite
polynomials. Some mathematical models based on these operators at a single spatial scale
have been described elsewhere [6,11]. In the case of the HT, it has been extended to the
multi-scale case [7-9], and has been successfully used in different applications
such as noise reduction [12], coding [13], and motion estimation for the case of image
sequences [14].

Applications to local orientation analysis are a major concern in this chapter. It is well
known that local orientation estimation can be achieved by combining the outputs from
polar separable quadrature filters [15]. Freeman and Adelson developed a technique to
steer filters by linearly combining basis filters oriented at a number of specific directions
[16]. The possibilities are, in fact, infinite because the set of basis functions required to
steer a function is not unique [17]. The Gaussian derivative family is perhaps the most
common example of such functions.

In the first part of this chapter we introduce the HT as an image representation model,
and show how local analysis can be achieved from a steered HT.

In the second part we build a noise-reduction algorithm for synthetic aperture radar
(SAR) images based on the steered HT that adapts to the local image content and to the
multiplicative nature of speckle.

In the third section, we fuse multi-spectral and panchromatic images from the same
satellite (Landsat ETM+) with different spatial resolutions. In this case we show how
the proposed method improves spatial resolution and preserves the spectral character-
istics, that is, the biophysical variable interpretation of the original images remains
intact.

Finally, we fuse SAR and multi-spectral Landsat ETM+ images, and show that in this
case spatial resolution is also improved while spectral resolution is preserved. Speckle
reduction in the SAR image is achieved, along with image fusion, within the analysis—
synthesis process of the fusion scheme.

Both fusion and speckle-reduction algorithms are based on the detection of relevant
image structures (primitives) during the analysis stage. For this purpose, Gaussian-
derivative filters at different scales can be used. Local orientation is estimated so that
the transform can be rotated at every position of the analysis window. In the case of noise
reduction, transform coefficients are classified based on structure dimensionality and
energy content so that those belonging to speckle are discarded. With a similar criterion,
transform coefficients from different image sources are classified to select coefficients
from each image that contribute to synthesize the fused image.
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12.2 The Hermite Transform
12.2.1 The Hermite Transform as an Image Representation Model

The HT [6,7] is a special case of polynomial transform. It can be regarded as an image
description model. Firstly, windowing with a local function w(x, y) takes place at several
positions over the input image. Next, local information at every analysis window is
expanded in terms of a family of orthogonal polynomials. The polynomials Gy, ,,—m(x, ¥)
used to approximate the windowed information are determined by the analysis window
function and satisfy the orthogonal condition:

+00 400

J J (%, )G, ¥)Gix1(x, y) dx dy = .48 (12.1)

—00 —00

forn,k =0,...,00,m =0,...,n;1 = 0,...,k; where §,;x denotes the Kronecker function.
Psychophysical insights suggest using a Gaussian window function, which resembles
the receptive field profiles of human vision, that is,

exp <— M) (12.2)
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The Gaussian window is separable into Cartesian coordinates; it is isotropic, thus it is
rotationally invariant and its derivatives are good models of some of the more important
retinal and cortical cells of the human visual system [5,10].

In the case of a Gaussian window function, the associated orthogonal polynomials are
the Hermite polynomials [18]:

Gomm(t, y) = ! f)Hm (Z) (12.3)
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where H,,(x) denotes the nth Hermite polynomial.

The original signal L(x, y), where (x, y) are the pixel coordinates, is multiplied
by the window function w(x — p, y — ¢), at positions (p, q) that conform the sampling
lattice S.

Through replication of the window function over the sampling lattice, a periodic
weighting function is defined as W(x,y) = )  w(x —p, y —g). This weighting function

(p.g)es
must be different from zero for all coordinates (x, y), then:

L(x, y) = > L, yolx —py —9q) (12.4)

1
W, y) o
The signal content within every window function is described as a weighted sum of
polynomials G, ,,_(x, y) of m degree in x and n — m in y. In a discrete implementation, the
Gaussian window function may be approximated by the binomial window function, and
in this case, its orthogonal polynomials G, ,_n(x, y) are known as the Krawtchouck
polynomials.
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In either case, the polynomial coefficients L,, ,,_,(p, q) are calculated by convolution of
the original image L(x, y) with the function filter D, .(x, ¥) = Guupm(—%, —V)
w*(—x, —y) followed by subsampling at positions (p, g) of the sampling lattice S, i.e.,

+0o0 400

Li,n-m(p, q) = J J L(x, Y)Dy—m(x —p, y — q)dx dy (12.5)
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For the case of the HT, it can be shown [18] that the filter functions D,,, (X, V)
correspond to Gaussian derivatives of order m in x and n — m in y, in agreement with
the Gaussian derivative model of early vision [5,10].

The process of recovering the original image consists of interpolating the transform
coefficients with the proper synthesis filters. This process is called an inverse polynomial
transform and is defined by

i(x/ }/) = Z Z Z Lm,n—m(pr Q)Pm,n—m(x —pPYy- Q) (12.6)

n=0 m=0 (p,q)eS
The synthesis filters P, ,,_,(x, y) of order m and n — m are defined by

G, n—m(x, Y)o(x, y)

form=0,...,n and n=0,..., co.
W(x, y)

Pm,n—m(xr y) -

Figure 12.1 shows the analysis and synthesis stages of a polynomial transform. Figure 12.2
shows a HT calculated on a satellite image.

To define a polynomial transform, some parameters have to be chosen. First, we have to
define the characteristics of the window function. The Gaussian window is the best option
from a perceptual point of view and from the scale-space theory. Other free parameters
are the size of the Gaussian window spread (o) and the distance between adjacent
window positions (sampling lattice). The size of the window functions must be related
to the spatial scale of the image structures that are to be analyzed. Fine local changes are
better detected with small windows, but on the contrary, representation of low-resolution
objects needs large windows. To overcome this compromise, multi-resolution represen-
tations are a good alternative. For the case of the HT, a multi-resolution extension has
recently been proposed [8,9].

1 L Lo
1 Doo_| @ L°° . ™
] 01 01
1 Do1 | @), ; O,
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Origi D1o @ \‘J Synthesized
riginal | - -
image - _ -
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) Polynomial Polynomial .
@ Subsampling coefficients coefficients (@ oversampiing
FIGURE 12.1

Analysis and synthesis with the polynomial transform.
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FIGURE 12.2

(a) Hermite transform calculated on a satellite image. (b) Diagram showing the coefficient orders.
Diagonals depict zero-order coefficients (n = 0), first-order coefficients (n = 1), etc. Gaussian window with
spread o = /2 and subsampling d = 4 was used.

12.2.2 The Steered Hermite Transform

The HT has the advantage that high-energy compaction can be obtained through adap-
tively steering the transform [19]. The term steerable filters describes a set of filters that
are rotated copies of each other, and a copy of the filter in any orientation which is then
constructed as a linear combination of a set of basis filters. The steering property of the
Hermite filters can be considered because the filters are products of polynomials with a
radially symmetric window function. The N + 1 Hermite filters of Nth-order form a
steerable basis for each individual filter of order N. Based on the steering property, the
Hermite filters at each position in the image adapt to the local orientation content. This
adaptability results in significant compaction.

For orientation analysis purposes, it is convenient to work with a rotational version
of the HT. The polynomial coefficients can be computed through a convolution of the
image with the filter functions D,,(x)D,,_,(v); the properties of the filter functions are
separable in spatial and polar domains and the Fourier transform of the filter functions
are expressed in polar coordinates considering w, = wcosf and w, = wsin6,

dm(wx)dn—m(wy) = gm,n—m(e) : dn(w) (12~7)

where d,(w) is the Fourier transform for each filter function, and the radial frequency of
the filter function of the nth order Gaussian derivative is given by

dy(w) = \/%( — jwo)" exp(—(wo)* /4) (12.8)

and the orientation selectivity of the filter is expressed by

Smn—m(0) = 4 (Z) cos™ 6 -sin" " 6 (12.9)
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In terms of orientation frequency functions, this property of the Hermite filters can be
expressed by

Sun-m(0 = 600) =Y ¢ 1(B0)n—k,k(6) (12.10)

k=0

where ¢, x (6p) is the steering coefficient. The Hermite filter rotation at each position over
the image is an adaptation to local orientation content. Figure 12.3 shows the directional
Hermite decomposition over an image. First a HT was applied and then the coefficients of
this transform were rotated towards the local estimated orientation, according to a
maximum oriented energy criterion at each window position. For local 1D patterns, the
steered HT provides a very efficient representation. This representation consists of a
parameter 6, indicating the orientation of the pattern, and a small number of coefficients,
representing the profile of the pattern perpendicular to its orientation. For a 1D pattern
with orientation 6, the following relation holds:

n
o _ o k(O@)Lykk, m=0
Ly ym = g::)g” g (12.11)
0, m >0
For such a pattern, steering over 6 results in a compaction of energy into the coefficients
LZ,O, while all other coefficients are set to zero.

The energy content can be expressed through the Hermite coefficients (Parseval
Theorem) as

Eo =33 Lnl? (12.12)

The energy up to order N, Ey is defined as the addition of all squared coefficients up
to N order.

(a) (b)

FIGURE 12.3
Steered Hermite transform. (a) Original coefficients. (b) Steered coefficients. It can be noted that most coefficient
energy is concentrated on the upper row.
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The steered Hemite transform offers a way to describe 1D patterns on the basis of their
orientation and profile. We can differentiate 1D energy terms and 2D energy terms. That
is, for each local signal we have

N

ER6) = [L0,]% (12.13)
n=1
N n ’
ERO) = > (Ll (12.14)
n=1 m=1

12.3 Noise Reduction in SAR Images

The use of SAR images instead of visible and multi-spectral images is becoming increas-
ingly popular, because of their capability of imaging even in the case of cloud-covered
remote areas In addition to the all-weather capacity, there are several well-known advan-
tages of SAR data over other imaging systems [20]. Unfortunately, the poor quality of SAR
images makes it very difficult to perform direct information extraction tasks. Even more,
the incorporation of external reference data (in-situ measurements) is frequently needed
to guaranty a good positioning of the results. Numerous filters have been proposed to
remove speckle in SAR imagery; however, in most cases and even in the most elegant
approaches, filtering algorithms have a tendency to smooth speckle as well as informa-
tion. For numerous applications, low-level processing of SAR images remains a partially
unsolved problem. In this context, we propose a restoration algorithm that adaptively
smoothes images. Its main advantage is that it retains subtle details.

The HT coefficients are used to discriminate noise from relevant information such as
borders and lines in a SAR image. Then an energy mask containing relevant image
locations is built by thresholding the first-order transform coefficient energy Eq: E; =
L§,1+ L12,0 where Ly, and L, o are the first-order coefficients of the HT. These coefficients
are obtained by convolving the original image with the first-order derivatives of a
Gaussian function, which are known to be quasi-optimal edge detectors [21]; therefore,
the first-order energy can be used to discriminate edges from noise by means of a
threshold scheme.

The optimal threshold is set considering two important characteristics of SAR images.
First, one-look amplitude SAR images have a Rayleigh distribution and the signal-to-
noise ratio (SNR) is approximately 1.9131. Second, in general, the SNR of multi-look SAR
images does not change over the whole image; furthermore, SNRyjooxs = 1.9131 VN,
which yields for a homogeneous region I:

M1
o =— M 12.15
' 19131YN (1215

where o7 is the standard deviation of the region /, u; is its mean value, and N is the number
of looks of the image.
The first-order coefficient noise variance in homogeneous regions is given by

o’ = aa'lz, (12.16)
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where
a = [Re(x, y) * D1,0(x, y) * D1,0(= X, — ¥)|,—y—0

Ry is the normalized autocorrelation function of the input noise, and D, j is the filter used
to calculate the first-order coefficient. Moreover, the probability density function (PDF) of
Lip and Ly, in uniform regions can be considered Gaussian, according to the Central
Limit Theorem, then, the energy PDF is exponential:

1 Eq
P(Eq1) = 797 exp < 202) (12.17)
Finally, the threshold is fixed:
LY >
T=2In({—|o (12.18)
Pr

where Py is the probability (percentage) of noise left on the image and will be set by the
user. A careful analysis of this expression reveals that this threshold adapts to the local
content of the image since Equation 12.15 and Equation 12.16 show the dependence of o
on the local mean value ,, the latter being approximated by the Hermite coefficient L.

With the locations of relevant edges detected, the next step is to represent these
locations as one-dimensional patterns. This can be achieved by steering the HT as
described in the previous section so that the steering angle 6 is determined by the local
edge orientation. Next, only coefficients L, are preserved, all others are set to zero.

In summary, the noise reduction strategy consists of classifying the image in either
zero-dimensional patterns consisting of homogeneous noisy regions, or one-dimensional
patterns containing noisy edges. The former are represented by the zeroth order coeffi-
cient, that is, the local mean value, and the latter by oriented 1D Hermite coefficients.
When an inverse HT is performed over these selected coefficients, the resulting synthe-
sized image consists of noise-free sharp edges and smoothed homogeneous regions.
Therefore the denoised image preserves sharpness and thus, image quality. Some speckle
remains in the image because there is always a compromise between the degree of noise
reduction and the preservation of low-contrast edges. The user controls the balance of this
compromise by changing the percentage of noise left Pr on the image according to
Equation 12.18.

Figure 12.4 shows the algorithm for noise reduction, and Figure 12.5 through Figure 12.8
show different results of the algorithm.

12.4 Fusion Based on the Hermite Transform

Image fusion has become a useful tool to enhance information provided by two or more
sensors by combining the most relevant features of each image. A wide range of discip-
lines including remote sensing and medicine have taken advantage of fusion techniques,
which in recent years have evolved from simple linear combinations to sophisticated
methods based on principal components, color models, and signal transformations
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FIGURE 12.5
Left: Original SAR AeS-1 image. Right: Image after noise reduction.

among others [22-25]. Recently, multi-resolution techniques such as image pyramids and
wavelet transforms have been successfully used [25-27]. Several authors have shown that,
for image fusion, the wavelet transform approach offers good results [1,25,27]. Compar-
isons of Mallat’s and “a trous” methodologies have been studied [28]. Furthermore,
multi-sensor image fusion algorithms based on intensity modulation have been proposed
for SAR and multi-band optical data fusion [29].

Information in the fused image must lead to improved accuracy (from redundant
information) and improved capacity (from complementary information). Moreover,
from a visual perception point of view, patterns included in the fused image must be
perceptually relevant and must not include distracting artifacts. Our approach aims at
analyzing images by means of the HT, which allows us to identify perceptually relevant
patterns to be included in the fusion process while discriminating spurious artifacts.

The steered HT has the advantage of energy compaction. Transform coefficients
are selected with an energy compaction criterion from the steered Hermite transform;

FIGURE 12.6
Left: Original SEASAT image. Right: Image after noise reduction.



The Hermite Transform 283

FIGURE 12.7
Left: Original ERS1 image. Right: Image after noise reduction.

therefore, it is possible to reconstruct an image with few coefficients and still preserve
details such as edges and textures.

The general framework for fusion through HT includes five steps: (1) HT of the image.
(2) Detection of maximum energy orientation with the energy measure Ex’(6) at each
window position. In practice, one estimator of the optimal orientation # can be obtained
through tan(§) = Lo1/L1,0, where Ly; and L, are the first-order HT coefficients. (3)
Adaptive steering of the transform coefficients, as described in previous sections. (4)
Coefficient selection based on the method of verification of consistency [27]. This selection
rule uses the maximum absolute value within a 5 x 5 window over the image (area of
activity). The window variance is computed and used as a measurement of the activity
associated with the central pixel of the window. In this way, a significant value indicates
the presence of a dominant pattern in the local area. A map of binary decision is then

FIGURE 12.8
Left: Original ERS1 image. Right: Image after noise reduction.
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FIGURE 12.9

Fusion scheme with the Hermite transform.

created for the registry of the results. This binary map is subjected to consistency verifi-
cation. (5) The final step of the fusion is the inverse transformation from the selected
coefficients and their corresponding optimal 6. Figure 12.9 shows a simplified diagram of
this method.

12.4.1 Fusion Scheme with Multi-Spectral and Panchromatic Images

Our objective of image fusion is to generate synthetic images with a higher resolution that
attempts to preserve the radiometric characteristics of the original multi-spectral data.
It is desirable that any procedure that fuses high-resolution panchromatic data with
low-resolution multi-spectral data preserves, as much as possible, the original spectral
characteristics.

To apply this image fusion method, it is necessary to resample the multi-spectral
images so that their pixel size is the same as that of the panchromatic image’s. The
steps for fusing multi-spectral and panchromatic images are as follows: (1) Generate
new panchromatic images, whose histograms match those of each band of the multi-
spectral image. (2) Apply the HT with local orientation extraction and detection of
maximum energy orientation. (3) Select the coefficients based on the method of verifica-
tion of consistency. (4) Inverse transformation with the optimal 6 resulting from the
selected coefficient set. This process of fusion is depicted in Figure 12.10.

e Coeffi_cient
of high | N
30m degree of Inverse
energy transform L
e 0
A f———— —_—
Multi-spectral
Histogram
match
Hermite Hermite Energy Fusion Fused
transform transform computation image
rotated
15m L
6=arctan —1
1,0

Panchromatic

FIGURE 12.10
Hermite transform fusion for multi-spectral and panchromatic images.
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12.4.2 Experimental Results with Multi-Spectral and Panchromatic Images

The proposed fusion scheme with multi-spectral images has been tested on optical data.
We fused multi-spectral images from Landsat ETM+ (30 m) with its panchromatic band
(15 m). We show in Figure 12.11 how the proposed method can help improve spatial
resolution.

To evaluate the efficiency of the proposed method we calibrate the images so that
digital values are transformed to reflectance values. Calibrated images were compared
before and after fusion, by means of the Tasselep cap transformation (TCT) [30-32]. The
TCT method is reported in [33]. The TCT transforms multi-spectral spatial values to a new
domain based on biophysical variables, namely brightness, greenness, and a third com-
ponent of the scene under study. It is deduced that the brightness component is a
weighted sum of all the bands, based on the reflectance variation of the ground. The
greenness component describes the contrast between near-infrared and visible bands
with the mid-infrared bands. It is strongly related to the amount of green vegetation in
the scene. Finally, the third component gives a measurement of the humidity content of
the ground. Figure 12.12 shows the brightness, greenness, and third components obtained
from HT fusion results.

The TCT was applied to the original multi-spectral image, the HT fusion result, and
principal component analysis (PCA) fusion method.

To understand the variability of TCT results on the original, HT fusion and PCA fusion
images, the greenness, and brightness components were compared. The greenness and
brightness components define the plane of vegetation in ETM+ data. These results are
displayed in Figure 12.13. It can be noticed that, in the case of PCA, the brightness and
greenness content differs considerably from the original image, while in the case of HT
they are very similar to the original ones. A linear regression analysis of the TCT
components (Table 12.1) shows that the brightness and greenness components of the
HT-fused image present a high linear correlation with the original image values. In other
words, the biophysical properties of multi-spectral images are preserved when using the
HT for image fusion, in contrast to the case of PCA fusion.

(b)

FIGURE 12.11

(a) Original Landsat 7 ETM+ image of Mexico city (resampled to 15m to match geocoded panchromatic), (b)
Resulting image of ETM+ and panchromatic band fusion with Hermite transform (Gaussian window with
spread o = V2 and window spacing T = 4) (RGB composition 54-3).
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(a) (b) G
FIGURE 12.12
(a) Brightness, (b) greenness, and (c) third component in Hermite transform in a fused image.

12.4.3 Fusion Scheme with Multi-Spectral and SAR Images

In the case of SAR images, the characteristic noise, also known as speckle, imposes
additional difficulties to the problem of image fusion. In spite of this limitation, the use
of SAR images is becoming more popular due to their immunity to cloud coverage.
Speckle removal, as described in previous section, is therefore a mandatory task in fusion
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FIGURE 12.13 (See color insert following page 240.)
Greenness versus brightness, (a) original multi-spectral, (b) HT fusion, (c) PCA fusion.
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TABLE 12.1

Linear Regression Analysis of TCT Components: Correlation Factors of Original Image with HT
Fusion and PCA Fusion Images

Third Third
Brightness Brightness Greenness Greenness Component Component
(Original/HT) ~ (Original/PCA)  (Original/HT)  (Original/PCA)  (Original/HT)  (Original/PCA)

Correlation 1.00 0.93 0.99 0.98 0.97 0.94
factor

applications involving SAR imagery. The HT allows us to achieve both noise reduction
and image fusion.

It is easy to figure out that local orientation analysis for the purpose of noise reduction
can be combined with image fusion in a single direct-inverse HT scheme. Figure 12.14
shows the complete methodology to reduce noise and fuse Landsat ETM+ with SAR
images.

12.4.4 Experimental Results with Multi-Spectral and SAR Images

We fused multi-sensor images, namely SAR Radarsat (8 m) and multi-spectral Landsat
ETM+ (30 m), with the HT and showed that in this case too spatial resolution was
improved while spectral resolution was preserved. Speckle reduction in the SAR image
was achieved, along with image fusion, within the analysis-synthesis process of the
fusion scheme proposed. Figure 12.15 shows the result of panchromatic and SAR image
HT fusion including speckle reduction. Figure 12.16 illustrates the result of multi-spectral
and SAR image HT fusion. No significant distortion in the spectral and radiometric
information is detected.

A comparison of the TCT of the original multi-spectral image and the fused image can
be seen in Figure 12.17. There is a variation between both plots; however, the vegetation
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FIGURE 12.14
Noise reduction and fusion for multi-spectral and SAR images.
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(a) (c)
FIGURE 12.15
(a) Radarsat image with speckle (1998). (b) Panchromatic Landsat-7 ETM+ (1998). (c) Resulting image fusion

with noise reduction.

FIGURE 12.16 (See color insert following page 240.)
(a) Original multi-spectral. (b) Result of ETM+ and Radarsat image fusion with HT (Gaussian window with
spread ¢ = /2 and window spacing d = 4) (RGB composition 5-4-3).
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FIGURE 12.17 (See color insert following page 240.)
Greenness versus brightness: (a) original multi-spectral, (b) LANDSAT-SAR fusion with HT.
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FIGURE 12.18
Left: Original first principal component of a 25 m resolution LANDSAT TM5 image. Right: Result of fusion with
SAR AeS-1 denoised image of Figure 12.5.

plane remains similar, meaning that the fused image still can be used to interpret
biophysical properties.

Another fusion result is displayed in Figrue 12.18. In this case, the 5 m resolution SAR
AeS-1 denoised image displayed on right side of Figure 12.5 is fused with its correspond-
ing 25 m resolution LANDSAT TM5 image. Multi-spectral bands were analyzed with
principal components. The first component is shown on the left in Figure 12.18. Fusion of
the latter with the SAR AeS-1 image is shown on the right. Note the resolution improve-
ment of the fused image in comparison with the LANDSAT image.

12.5 Conclusions

In this chapter the HT was introduced as an efficient image representation model that can
be used for noise reduction and fusion in remote perception imagery. Other applications
such as coding and motion estimation have been demonstrated in related works [13,14].

In the case of noise reduction in SAR images, the adaptive algorithm presented here
allows us to preserve image sharpness while smoothing homogeneous regions.

The proposed fusion algorithm based on the HT integrates images with different
spatial and spectral resolutions, either from the same or different image sensors. The
algorithm is intended to preserve both the highest spatial and spectral resolutions of the
original data.

In the case of ETM+ multi-spectral and panchromatic image fusion, we demonstrated
that the HT fusion method did not lose the radiometric properties of the original multi-
spectral image; thus, the fused image preserved biophysical variable interpretation.
Furthermore, the spatial resolution of the fused images was considerably improved.

In the case of SAR and ETM+ image fusion, spatial resolution of the fused image was
also improved, and we showed for this case how noise reduction could be incorporated
within the fusion scheme.

These algorithms present several common features, namely, detection of relevant image
primitives, local orientation analysis, and Gaussian derivative operators, which are com-
mon to some of the more important characteristics of the early stages of human vision.



290 Image Processing for Remote Sensing

The algorithms presented here are formulated in a single spatial scale scheme, that is, the
Gaussian window of analysis is fixed; however, multi-resolution is also an important
characteristic of human vision and has also proved to be an efficient way to construct
image processing solutions. Multi-resolution image processing algorithms are straight-
forward to build from the HT by means of hierarchical pyramidal structures that repli-
cate, at each resolution level, the analysis—synthesis image processing schemes proposed
here. Moreover, a formal approach to the multi-resolution HT for local orientation
analysis has been recently developed, clearing the way to propose new multi-resolution
image processing tasks [8,9].
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13.1 Introduction

Satellite radar systems have an important ability to observe the Earth’s surface, inde-
pendent of cloud and light conditions. This property of satellite radars is particularly
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useful in high latitude regions, where harsh weather conditions and the polar night
restrict the use of optical sensors. Regular observations of sea ice using space-borne radars
started in 1983 when the Russian OKEAN side looking radar (SLR) system became
operational. The wide swath (450 km) SLR images of 0.7-2.8 km spatial resolution were
used to support ship transportation along the Northern Sea Route and to provide ice
information to facilitate other polar activities. Sea ice observation using high-resolution
synthetic aperture radar (SAR) from satellites began with the launch of Seasat in 1978,
which operated for only three months, and continued with ERS from 1991, RADARSAT
from 1996, and ENVISAT from 2002. Satellite SAR images with a typical pixel size of 30 m
to 100 m, allow observation of a number of sea ice parameters such as floe parameters [1],
concentration [2], drift [3], ice type classification [4,5,6], leads [7], and ice edge processes.
RADARSAT wide swath SAR images, providing enlarged spatial coverage, are now in
operation at several sea ice centers [8]. The ENVISAT advanced SAR (ASAR) operating at
several imaging modes, including single polarization wide swath (400 km) and alternat-
ing polarization narrow swath (100 km) modes can improve the classification of several
ice types and open water (OW) using dual polarization images.

Several methods for sea ice classification have been developed and tested [9-11]. The
straightforward and physically plausible approach is based on the application of sea ice
microwave scattering models for the inverse problem solution [12]. This is, however, a
difficult task because the SAR signature depends on many sea ice characteristics [13]. A
common approach in classification is to use empirically determined sea ice backscatter
coefficients obtained from field campaigns [14,15]. Classical statistical methods based on
Bayesian theory [16] are known to be optimal if the form of the probability density
function (PDF) is known and can be parameterized in the algorithm. A Bayesian classifier,
developed at the Alaska SAR Facility (ASF) [4], assumes a Gaussian distribution of sea ice
backscatter coefficients [17]. Utilization of backscatter coefficients only, limits the number
of ice classes that can be distinguished and decreases the accuracy of classification
because backscatter coefficients of several sea ice types and OW overlap significantly
[18]. Incorporation of other image features with a non-Gaussian distribution requires
modeling of the joint PDF of features from different sensors, which is difficult to achieve.
The classification errors can be grouped into two categories: (1) labeling inconsistencies
and (2) classification-induced errors [19]. The errors in the first group are due to mixed
pixels, transition zones between different ice regimes, temporal change of physical prop-
erties, sea ice drift, within-class variability, and limited training and test data sets. The
errors in the second group are errors induced by the classifier. These errors can be due to
the selection of an improper classifier for the given problem, its parameters, learning
algorithms, input features, etc..—the problems traditionally considered within pattern
recognition and classification domains.

Fusion of data from several observation systems can greatly reduce errors in labeling
inconsistency. These can be satellite and aircraft images obtained at different wavelengths
and polarizations, data in cartographic format represented by vectors and polygons (i.e.,
bathymetry profiles, currents, meteorological information), and expert knowledge. Data
fusion can improve the classification and extend the use of the algorithms to larger
geographical areas and several seasons. Data fusion can be done using statistical methods,
the theory of belief functions, fuzzy logic and fuzzy set theory, neural networks,
and expert systems [20]. Some of these methods have been successfully applied to sea
ice classification [21]. Haverkamp et al. [11] combined a number of SAR-derived sea ice
parameters and expert geophysical knowledge in the rule-based expert system. Beaven
[22] used a combination of ERS-1 SAR and special sensor microwave/imager (SSM/I)
data to improve estimates of ice concentration after the onset of freeze-up. Soh and
Tsatsoulis [23] used information from various data sources in a new fusion process
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based on Dempster—Shafer belief theory. Steffen and Heinrichs [24] merged ERS SAR and
Landsat thematic mapper data using a maximum likelihood classifier. These studies
demonstrated the advantages that can be gained by fusing different types of data.
However, there is still forthcoming work to compare different sea sensor data fusion
algorithms and assess their performances using ground-truth data. In this study we
investigate and analyze the performance of an artificial neural network model applied
for sea ice classification and compare its performance with the performance of the linear
discriminant analysis (LDA) based algorithm.

Artificial neural network models received high attention during the last decades due to
their ability to approximate complex input—output relationships using a training data set,
perform without any prior assumptions on the statistical model of the data, generalize
well on the new, previously unseen data (see Ref. [25] and therein), and be less affected by
noise. These properties make neural networks especially attractive for the sensor data
fusion and classification. Empirical comparisons of neural network-based algorithms
with the standard parametric statistical classifiers [26,27] showed that the neural network
model, being distribution free, can outperform the statistical methods on the condition
that a sufficient number of representative training samples is presented to the neural
network. It also avoids the problem of determining the amount of influence a source
should have in the classification [26]. Standard statistical parametric classifiers require a
statistical model and thus work well when the used statistical model (usually multi-
variate normal) is in good correspondence with the observed data. There are not many
comparisons of neural network models with nonparametric statistical algorithms. How-
ever, there are some indications that these algorithms can work at least as well as neural
network approaches [28].

Several researchers proposed neural network models for sea ice classification. Key et al.
[29] applied a backpropagation neural network to fuse the data of two satellite radio-
meters. Sea ice was among 12 surface and cloud classes identified on the images. Hara
et al. [30] developed an unsupervised algorithm that combines learning vector quantiza-
tion and iterative maximum likelihood algorithms for the classification of polarimetric
SAR images. The total classification accuracy, estimated using three ice classes, comprised
77.8% in the best case (P-band). Karvonen [31] used a pulse-coupled neural network for
unsupervised sea ice classification in RADARSAT SAR images. Although these studies
demonstrated the usefulness of neural network models when applied to sea ice classifi-
cation, the algorithms still need to be extensively tested under different environmental
conditions using ground-truth data. It is unclear whether neural network models outper-
form traditional statistical classifiers and generalize well on the test data set. It is also
unclear which input features and neural network structure should be used in classifica-
tion.

This study analyzes the performance of a multi-sensor data fusion algorithm based on a
multi-layer neural network also known as multi-layer perceptron (MLP) applied for sea ice
classification. The algorithm fuses three different types of satellite images: ERS, RADAR-
SAT SAR, and low-resolution visible images; each type of data carries unique information
on sea ice properties. The structure of the neural network is optimized for the sea ice
classification using a pruning method that removes redundant connections between
neurons. The analysis presented in this study consists of the following steps: Firstly, we
use a set of in situ sea ice observations to estimate the contribution of different sensor
combinations to the total classification accuracy. Secondly, we evaluate the positive effect
of SAR image texture features included in the ice classification algorithm, utilizing only
tonal image information. Thirdly, we verify the performance of the classifier by compar-
ing it with the performance of the standard statistical approach. As a benchmark, and for
comparison, we use an LDA-based algorithm [6] that resides in an intermediate position
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between parametric and nonparametric algorithms such as the K-nearest-neighbor
classifier. Finally, the whole image area is classified and analyzed to give additional
evidence of the generalization properties of the classifier; and the results of automatic
classification are compared with manually prepared classification maps.

In the following sections we describe the multi-sensor image sets used and the in situ
data (Section 13.2), the MLP and LDA-based classification algorithms (Section 13.3), and
finally discuss the results of our experiments in Section 13.4.

13.2 Data Sets and Image Interpretation
13.2.1 Acquisition and Processing of Satellite Images

In our experiments, we used a set of spatially overlapping ERS-2 SAR low-resolution
images (LRI), RADARSAT Scan SAR Wide beam mode image, and Meteor 3/5 TV
optical image, acquired on April 30, 1998. The characteristics of the satellite data are
summarized in Table 13.1. The RADARSAT Scan SAR scene and the corresponding
fragment of the Meteor image, covering a part of the coastal Kara Sea with the Ob and
Yenisey estuaries, are shown in Figure 13.1. ERS SAR image has the narrowest swath
width (100 km) among the three sensors. Thus the size of the image fragments (Figure
13.2) used for fusion is limited by the spatial coverage of the two ERS SAR images
available for the study shown in Figure 13.2a. The images contain various stages and
forms of first year, young, and new ice. The selection of test and training regions in the
images is done using in situ observations made onboard the Russian nuclear icebreaker
““Sovetsky Soyuz,” which sailed through the area as shown in Figure 13.1a by a white line.
Compressed SAR images were transmitted to the icebreaker via INMARSAT in near real-
time and were available onboard for ice navigation. The satellite images onboard enabled
direct identification of various sea ice types observed in SAR images and verification of
their radar signatures.

The SAR data were received and processed into images at Kongsberg Satellite Services
in Tromsg, Norway. The ScanSAR image is 500 km wide and has 100 m spatial resolution
(Table 13.1), which corresponds to a pixel spacing of 50 m. The image was filtered and
down-sampled to have the same pixel size (100 m) as the ERS SAR LRI with 200 m spatial
resolution (Table 13.1). Further processing includes antenna pattern correction, range
spreading loss compensation, and a correction for incidence angle. The resulting pixel

TABLE 13.1
The Main Parameters of the Satellite Systems and Images Used in the Study
Spatial
Resolution/ Range
Wavelength Swath Number of

Sensor and Band Polarization Width of Looks Incidence Angles
RADARSAT Scan

SAR Wide beam mode 5.66cm C-band HH 500 km 100m 4x2 20°—49°
ERS SAR low

resolution image (LRI)  5.66cm C-band VV 100 km 200m ~30 20°-26°
Meteor-3/5 MR-900

TV camera system 0.5-0.7 um VIS Nonpolarized, 2600km  ~2km ~46.6°(left)—46.6°

panchromatic (right-looking)
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FIGURE 13.1
RADARSAT Scan SAR (a) and Meteor 3/5 TV (b) images acquired on April 30, 1998. The icebreaker route and
coastal line are shown. Flaw polynyas are marked by letters A, B, and C.
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value is proportional to the logarithm of the backscatter coefficient. The scaling factor and
a fixed offset, normally provided in CEOS radiometric data record, are used to obtain
absolute values of the backscatter coefficients (sigma-zero) in decibels [32]. These param-
eters are not available for the relevant operational quantized 8-bit product, making
retrieval of absolute values of sigma-zero difficult. However, in a supervised classification
procedure it is important that only relative values of image brightness within a single
image and across different images used in classification are preserved. Variations of
backscatter coefficients of sea ice in the range direction are relatively large, varying
from 4 dB (for dry multi-year ice) to 8 dB (for wet ice) [33], due to the large range of
incidence angles from 20° to 49°. The range-varying normalization, using empirical
dependencies for the first-year (FY) ice dominant in the images, was applied to reduce
this effect [33]. The uncompensated radiometric residuals for the other ice types presented
in the images increase classification error. The latter effect may be reduced by application
of texture and other statistical local parameters, or by restricting the range of incidence
angles and training classification algorithms separately within each range. In this study
we apply texture features, which depend on relative image values and thus should be less
sensitive to the variations of image brightness in range direction.

The two ERS SAR LRI (200 m spatial resolution) were processed in a similar way to the
RADARSAT image. The image pixel value is proportional to the square root of back-
scatter coefficients [34], which is different from the RADARSAT pixel value representa-
tion where a logarithm function is used. The absolute values of the backscatter coefficients
can be obtained using calibration constants provided by the European Space Agency
(ESA) [34], but for this study we used only the pixel values derived from the processing
described above.

The visual image was obtained in the visible spectrum (0.5-0.7 um) by the MR-900
camera system used onboard the Meteor-3/5 satellite. The swath width of the sensor is
2600 km and the spatial resolution is ~2 km. For fusion purposes the coarse image is
resampled to the same pixel size as RADARSAT and ERS images. Even though no clouds
are observed in the image, small or minor clouds might be present but not visible in the
image due to the ice-dominated background.

For spatial alignment, the images were georeferenced using corner coordinates and
ground control points and then transformed to the universal transverse mercator (UTM)
geographical projection. The corresponding pixels of the spatially aligned and resampled
images cover approximately the same ice on the ground. Because the images are acquired
with time delay reaching 8 h 42 min for RADARSAT—Meteor images (Table 13.2) and
several kilometers ice drift occur during this period, a certain mismatch of the ice features
in the images are present. This is corrected for as much as possible, but there are still
minor errors in the co-location of ice features due to rotation and local convergence
or divergence of the drifting ice pack. The fast ice does not introduce this error due to
its stationarity.

TABLE 13.2

Satellite Images and In Situ Data

Sensor Date/Time (GMT) No. of Images No. of In Situ Observations
RADARSAT Scan SAR 30 April 1998/11:58 1 56

ERS-2 SAR 30 April 1998/06:39 3 25

Meteor-3 TV camera MR 900 30 April 1998/03:16 1 >56




300 Image Processing for Remote Sensing

13.2.2 Visual Analysis of the Images

The ice in the area covered by the visual image shown in Figure 13.1b mostly consists of thick
and medium FY ice of different deformations, identified by a bright signature in the visible
image and various grayish signatures in the ScanSAR image in Figure 13.1a. Due to dominant
easterly and southeasterly winds in the region before and during the image acquisition, the
ice drifted westwards, creating the coastal polynyas with OW and very thin ice, characterized
by the dark signatures in the optical image. Over new and young ice types, the brightness of
ice in the visual image increases as the ice becomes thicker. Over FY ice types, increases in ice
thickness are masked by high albedo snow cover. The coarse spatial resolution of the TV
image reduces the discrimination ability of the classifier, which is especially noticeable in
regions of mixed sea ice. However, two considerations need to be taken into account: firstly,
the texture features computed over the relatively large SAR image regions are themselves
characterized by the lower spatial resolution, and secondly, the neural network-based
classifier providing nonlinear input-output mapping can theoretically mediate the later
affects by combining low and high spatial resolution data.

The physical processes of scattering, reflectance, and attenuation of microwaves deter-
mine sea ice radar signatures [35]. The scattered signal received depends on the surface
and volume properties of ice. For thin, high salinity ice types the attenuation of micro-
waves in the ice volume is high, and the backscatter signal is mostly due to surface
scattering. Multi-year ice characterized by strong volume scattering is usually not
observed in the studied region. During the initial stages of sea ice growth, the sea ice
exhibits a strong change in its physical and chemical properties [36]. Radar signatures of
thin sea ice starting to form at different periods of time and growing under different
ambient conditions are very diverse. Polynyas appearing dark in the visual image (Fig-
ure 13.1b, regions A, B, and C) are depicted by various levels of brightness in the SAR
image in Figure 13.1a. The dark signature of the SAR image in region A corresponds
mostly to grease ice formed on the water surface. The low image brightness of grease ice is
primarily due to its high salinity and smooth surface, which results in a strong specular
reflection of the incident electromagnetic waves. At C-band, this ice is often detectable
due to the brighter scattering of adjacent, rougher, OW. Smooth nilas also appears dark in
the SAR image but the formation of salt flowers or its rafting strongly increases the
backscatter. The bright signature of the polynya in region B could be due to the formation
of pancake ice, brash ice, or salt flowers on the surface of the nilas.

A common problem of sea ice classification of SAR images acquired at single fre-
quency and polarization is the separation of OW and sea ice, since backscatter of OW
changes as a function of wind speed. An example of ice-free polynya can be found in
region C in Figure 13.1a where OW and thin ice have practically the same backscatter.
This vast polynya (Taimyrskaya), expanding far northeast, can be easily identified in
the Meteor TV image in Figure 13.1b, region C, due to its dark signature (RADARSAT
SAR image covers only a part of it). As mentioned before, dark signature in the visual
image mainly corresponds to the thin ice and OW. Therefore, to some extent, the visual
image is complementary to SAR data, enabling separation of FY ice with different
surface roughness from thinner sea ice and OW. SAR images, on the other hand, can
be used for classification of FY ice of different surface roughness, and separation of thin
ice types.

13.2.3 Selection of Training Regions

For supervised classification it is necessary to define sea ice classes and to select in the
image training regions for each class. The classes should generally correspond to the
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TABLE 13.3
Description of the Ice Classes and the Number of Training and Test Feature Vectors for Each Class
No. of No. of
Training Test
Sea Ice Class Description Vectors Vectors
1. Smooth first-year ice Very smooth first-year ice of
medium thickness (70-120 cm) 150 130
2. Medium deformation Deformed medium and thick (>120 cm)
first-year ice first-year ice, deformation is 2-3 1400 1400
using the 5-grade scale
3. Deformed first-year ice The same as above, but with deformation 3-5 1400 1400
4. Young ice Gray (10-15cm) and gray-white (15-30 cm) ice,
small floes (20-100m) and ice cake, 1400 1400
contains new ice in between floes space
5. Nilas Nilas (5-10cm), grease ice, areas of open water 1400 1400
6. Open water Mostly open water, at some places formation
of new ice on water surface 30 26

World Meteorological Organization (WMO) terminology [37], so that the produced sea ice
maps can be used in practical applications. WMO defines a number of sea ice types and
parameters, but the WMO classification is not necessarily in agreement with the classifi-
cation that can be retrieved from satellite images. In defining the sea ice classes, we
combine some of the ice types into the larger classes based on a priori knowledge of
their separation in the images and some practical considerations. For navigation in sea ice
it is more important to identify thicker ice types, their deformations, and OW regions.
Since microwave backscatter from active radars such as SAR is sensitive to various stages
of new and young ice, multi-year FY ice and surface roughness, we have selected the
following six sea ice classes for use in the classification: smooth, medium deformation,
deformed FY ice, young ice, nilas, and open water OW. From their description given in
Table 13.3 it is seen that the defined ice classes contain inclusions of other ice types
because it is usually difficult to find ““pure” ice types extended over large areas in the
studied region. The selected training and test regions for different sea ice classes, overlaid
on the RADARSAT SAR image, are shown by the rectangles in Figure 13.3. These are
homogeneous areas that represent ““typical” ice signatures as known a priori based on the
combined analysis of the multi-sensor data set, image archive, bathymetry, meteoro-
logical data, and in situ observations. The in situ ice observations from the icebreaker
were done along the whole sailing route between Murmansk and the Yenisei estuary. In
this study we have mainly used the observations falling into the image fragment used for
fusion, or located nearby, as shown in Figure 13.3a. Examples of photographs of various
ice types are shown in Figure 13.4.

13.3 Algorithms Used for Sea Ice Classification
13.3.1 General Methodology

To assess the improvement of classification accuracy that can be achieved by combining
data from the three sensors we trained and tested several classifiers using different
combinations of image features stacked in feature vectors. A set of the feature vectors
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FIGURE 13.3
Selection of the training and test regions: (a) fragment of the RADARSAT Scan SAR image (April 30, 1998) with
the ship route and the image regions for different ice classes overlaid and (b) enlarged part of the same fragment.

computed for different ice classes is randomly separated into training and test data
sets. The smaller dimensionality subsets have been produced from the original data sets
containing all features and were used for training and validation of both algorithms in the
experiments described below.

13.3.2 Image Features

The SAR image features used for the feature vectors are in three main groups: image
moments, gray level co-occurrence matrix (GLCM) texture, and autocorrelation function—
based features. These features describe local statistical image properties within a small
region of an image. They have been investigated in several studies [6,9,10,38—41] and are
in general found to be useful for sea ice classification. A set of the most informative
features differs from study to study, and it may depend on several factors including
geographical region, ambient conditions, etc. Application of texture usually increases
classification accuracy; however, it cannot fully resolve ambiguities between different
sea ice types, so that incorporation of other information is required.

The texture features are often understood as a description of spatial variations of image
brightness in a small image region. Some texture features can be used to describe regular
patterns in the region, while others depend on the overall distribution of brightness.
Texture has been used for a long time by sea ice image interpreters for visual classification
of different sea ice types in radar images. For example, multi-year ice is characterized by a
patchy image structure explained by the formation of numerous melting ponds on its
surface during summer and then freezing in winter. Another example is the network of
bright linear segments corresponding to ridges in the deformed FY ice. The texture
depends on the spatial resolution of the radar, the spatial scale of sea ice surface, and
volume inhomogeneity. There is currently a lack of information on large-scale sea ice
properties, and as a consequence, on mechanisms of texture formation.
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(a) (b)

FIGURE 13.4

Photographs of different sea ice types outlining different mechanisms of ice surface roughness formation.
(a) Deformed first-year ice. (b) Gray—white ice, presumably formed from congealed pancake ice. (c) Rafted
nilas. (d) Pancake ice formed in the marginal ice zone from newly formed ice (grease ice, frazil ice) influenced by
surface waves. (e) Frost flowers on top of the first-year ice. (f) Level fast ice (smooth first-year ice).

In supervised classification the texture features are computed over the defined training
regions and the classifier is trained to recognize similar patterns in the newly acquired
images. Several texture patterns can correspond to one ice class, which implies the
existence of several disjointed regions in feature space for the given class. The latter,
however, is not observed in our data. The structure of data in the input space is
affected by several factors including definition of ice classes, selection of the training
regions, and existence of smooth transitions between different textures. In this study the
training and test data have been collected over a relatively small geographic area where
image and in situ data are overlapped. In contrast to this local approach, the ice texture
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investigation can be carried out using training regions selected over a relatively large
geographic area and across different seasons based on visual analysis of images [38].
Selection of ice types that may have several visually distinct textures can facilitate forma-
tion of disjointed or complex form clusters in the feature space pertinent for one ice type.
Note that in this case MLP should show better results than the LDA-based algorithm.

The approach to texture computation is closely related to the classification approach
adopted to design multi-season, large geographic area classification system using (1) a
single classifier with additional inputs indicating area and season (month number), (2) a
set (ensemble) of local classifiers designed to classify ice within a particular region and
season, and (3) a multiple classifier system (MCS). The trained classifier presented in this
paper can be considered as a member of a set of classifiers, each of which performs a
simpler job than a single multi-season, multi-region classifier.

The image moments used in this study are mean value, second-, third-, and fourth-
order moments, and central moments computed over the distribution of pixel values
within a small computation window. The GLCM-based texture features include homo-
geneity, contrast, entropy, inverse difference moment [42], cluster prominence, and
cluster shade. The autocorrelation function-based features are decorrelation lengths
computed along 0°, 45°, and 90° directions. In total, 16 features are used for SAR image
classification. Only the mean value was used for the visual image because of its lower
spatial resolution. The texture computation parameters are selected experimentally, tak-
ing into account the results of previous investigations [6,9,10,38—41].

There are several important parameters that need to be defined for GLCM: (1) the
computation window size; (2) the displacement value, also called interpixel distance; (3)
the number of quantization levels; and (4) orientation. We took into account that the
studied region contains mixed sea ice types, while defining these parameters. With
increasing window size and interpixel distance (which is related to the spatial scale of
inhomogeneities ““captured’” by the algorithm), computed texture would be more affected
by the composition of ice types within the computational window rather than the prop-
erties of ice. Therefore in the hard classification approach adopted here, we selected the
smaller window size equal to 5x5 pixels and interpixel distance equal to 2. This implies
that we explore moderate scale ice texture. The use of macro texture information (larger
displacement values) or multi-scale information (a range of different displacement val-
ues), recommended in the latest and comprehensive ice texture study [38], would require a
soft classification approach in our case. To reduce the computational time, the range of
image gray levels is usually quantized into a number of separate bins. The image quant-
ization, generally leading to the loss of image information, does not strongly influence the
computation of texture parameters on the condition that a sufficient number of bins are
used (>16-32) [38]. In our experiments the range of image gray levels is quantified to the
20 equally spaced bins (see Ref. [38] for the discussion on different quantization schemes);
the GLCM is averaged for the three different directions 0°, 45°, and 90° to account for
possible rotation of ice. The training data set is prepared by moving the computational
window within the defined training regions. For each nonoverlapping placement
of the window, the image features are computed in three images and stacked in a vector.
The number of feature vectors computed for different ice classes is given in Table 13.3.

13.3.3 Backpropagation Neural Network

In our experiments we used a multi-layer feedforward neural network trained by a
standard backpropagation algorithm [43,44]. Backpropagation neural networks
also known as MLP [45] are structures of highly interconnected processing units, which
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are usually organized in layers. MLP can be considered as a universal approximator of
functions that learns or approximates the nonlinear input-output mapping function using
a training data set. During training the weights between processing units are iteratively
adjusted to minimize an error function, usually the root-mean-square (RMS) error func-
tion. The simple method for finding the weight updates is the steepest descent algorithm in
which the weights are changed in the direction of the largest reduction of the error, that is,
in the direction where the gradient of the error function with respect to the weights is
negative. This method has some limitations [25], including slow convergence in the areas
characterized by substantially different curvatures along different directions in the error
surface as, for example, in the long, steep-sided valley. To speed up the convergence, we
used a modification of the method that adds a momentum term [44] to the equation:

Aw, = —mVE,; + pAw, 1 (13.1)

where Aw, is the weight change at iteration 7, VE is the gradient of the error function
with respect to the weights evaluated at the current iteration, n is the learning rate
parameter, and w is the momentum constant, 0 < |u| <1. Due to the inclusion of the second
term, the changes of weights, having the same sign in steady downbhill regions of the error
surface, are accumulated during successive iterations, which increases the step size of
the algorithm. In the regions where oscillations take place, contributions from the mo-
mentum terms change sign and thus tend to cancel each other, reducing the step size
of the algorithm. The gradients VE, are computed using the known backpropagation
algorithm [43,44].

13.3.4 Linear Discriminant Analysis Based Algorithm

An LDA-based algorithm is proposed by Wackerman and Miller [6] for sea ice classifi-
cation in the marginal ice zone (MIZ) using single channel SAR data. In this study it is
applied for data fusion of different sensors. LDA is a known method for the reduction of
dimensionality of the input space, which can be used at the preprocessing stage of the
classification algorithm, to reduce the number of input features. This method is used to
project the original, usually high-dimensional input space onto a lower dimensional
one. The projection of n-dimensional data vector ¥ is done using the linear trans-
formation j = V% where ¥ is the vector of dimension m (m<n) and V is the nxm
transformation matrix. Elements of the transformation matrix are found by maximizing
Fisher’s criteria, which is a measure of separability between classes. For a two-class
problem it is defined as [46]:

“Tp =
Vij Bi]' Vi]‘

v Wi (13.2)

where Wj; = > (X; — m;)(X; — i)’ + (& — my)(X; — ﬁ%j)T is the total within-class covariance
matrix, given as a sum of the two covariance matrices of ith and jth ice classes, 11; and m;
are the mean feature vectors of classes i and j, respectively; B;; is the between-class matrix,
given by B; = (m; — m)(m; — r?lj)T, and 7 is the transformation (projection) vector to
which matrix V reduces in the two-class case. Vector 7; defines a new direction in feature
space, along which separation of classes i and j is maximal. It can be shown that vector ;;
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maximizing the clustering metric in Equation 13.2 is the eigenvector with the maximum
eigenvalue A that satisfies the equation [47]:

W,‘]leijﬁij = )\17,']‘ (13.3)

In general, case classification of vectors ij can be performed using traditional statistical
classifiers. The central limit theorem is applied since j represents a weighted sum of
random variables and conditional PDFs of ij are assumed to be multi-variate normal. The
method is distribution-free in the sense that ““it is a reasonable criterion for constructing a
linear combination” [47]. It is shown to be statistically optimal if the input features are
multi-variate normal [25]. Another assumption that needs to be satisfied when applying
LDA is the equivalence of the class conditional covariance matrices for each class. These
assumptions are difficult to satisfy in practice. However, the slight violation of these
criteria does not strongly degrade the performance of the classifier [47].

In the limiting case LDA can be used to project the input space in one dimension only.
By projecting feature vectors of pairs of classes, the multi-class classification problem can
be decomposed into two-class problems. The constructed classifier is a piecewise
linear classifier. For training of the classification algorithm and finding parameters of
the classifier the following steps are performed [6]:

1. The mean vectors 11; (i = 1,..., c), the between-class B;;, and within-class covar-
iance matrices Wij (i=1,...,ci=1,...,ci#])are estimated using the training
data set;

2. The transformation vectors v;; (i=1,..., ¢; j=1,..., ¢; i#]) are found as
eigenvectors of the matrix W; ' B; solving Equation 13.3 (since B;i; has the
same direction as m1; — rﬁj and the scaling factor is not important, the 7/;; can also
be found as ﬁl/ = Wijil(ﬁ"li — n_i]) [48])

3. The feature training vectors for ice classes i and j are projected on lines defined
by 7;;, computed in the previous step. The threshold t;; between two classes is
found as an intersection of two histograms. In total there are c>- ¢ thresholds for

¢ ice classes.

During the classification stage, to see if a new vector X belongs to class i, c—1 projections p;
= @ —m)" Ui, j = 1,...,c=1;i# j) are computed and X assigned to the class i if p; < t;;
for all j. If the latter condition is not satisfied vector ¥ is left unclassified.

13.4 Results

13.4.1 Analysis of Sensor Brightness Scatterplots

The image brightness' distribution for the six classes in the ERS and RADARSAT image is
presented in the scatter diagram in Figure 13.5a. As mentioned before, the absolute
values of backscatter coefficients were not available for the RADARSAT image and
therefore only relative values between ice classes can be analyzed from the scatter
diagram. It shows the variability of image brightness for most of the ice classes, exclusive

'We use this term as equivalent to image value or image digital number (DN).
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FIGURE 13.5

Image brightness scattergrams for (a) ERS, RADARSAT and (b) ERS, RADARSAT SAR, and Meteor television
camera images plotted using a subset of training feature vectors.

FY smooth ice is relatively high, and the clusters in two-dimensional subspace are
overlapped. The exception is OW for which polarization ratio is as high as 16 dB [49]
(VV/HH), estimated using the CMOD4 model (a semiempirical C-band model that
describes the dependency of backscatter signal on wind speed and image geometry
[50]), with wind speed values of 3-4 m/s measured onboard the ship. The corresponding
cluster is located away from those of sea ice, thus separation of OW from ice can be
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achieved using both HH and VV SAR sensors if the wind speed is in a certain range. The
changes of wind speed and, consequently, changes of OW radar signatures from those
used for training, can decrease classification accuracy. In the latter case incorporation of
visual data (see Figure 13.5b), where OW and nilas can be well separated from the ice
independently on wind speed, is quite important. The yearly averaged wind speeds at the
Kara Sea are in the range of 5-8 m/s for different coastal stations [51], which suggests that
the calm water conditions (wind speed below 3 m/s) are less common than wind roughed
OW conditions.

The variation in backscatter from FY ice mostly depends on surface roughness, thus
FY smooth ice appears dark in the images. Nilas has higher backscatter than FY smooth
ice due to rafting and formation of frost flowers on its surface. An example of frost
flowers is shown in Figure 13.4e. The relatively high variation of backscatter can be
partially explained by the spatial variation of surface roughness, and the existence of
OW areas between the ice. These factors may also influence the other ice type signatures
(FY deformed and young ice) often containing OW areas in small leads between ice
floes. Formation of new ice in leads and existence of brash ice between larger ice floes
can also modify ice radar signatures. The backscatter from young ice in the diagram is
high due to the small size of the ice floes. The raised, highly saline ice edges are perfect
scatterers and the backscatter signal integrated over large areas of young ice is often

typically high.

13.4.2 MLP Training

In our study we used a standard software package—Stuttgart Neural Network Simulator
(SNNS) [52]—developed at the University of Stuttgart in collaboration with other univer-
sities and research institutes. In addition to a variety of implemented neural network
architectures it provides a convenient graphical user interface.

The proper representation of the neural network inputs and outputs is important for its
performance. There are several choices of target coding schemes. The “one from n” or
“winner-takes-all” coding scheme is often used for classification. According to this
scheme a desired target value of an output unit corresponding to true class of the input
vector is unity, and the target values of all other units are zero. In cases where signifi-
cantly different numbers of training vectors are used for each class, the neural network
biases strongly in favour of the classes with the largest membership, as shown in Ref. [53].
Neural network training using this technique implicitly encodes proportions of samples
within classes as prior probabilities. In our training data set the number of training vectors
for each class does not correspond to their prior probabilities. These probabilities depend
on many factors and are generally unknown. We assumed them to be equal and adopted
the following modification of the coding scheme [53]:

T — 1/VN; if %; € class i
! 0 otherwise,

where T; is the target value of class i, and N; is the number of patterns in that class. Since
the number of vectors in several classes are large, their target values do not differ much
from zero. Therefore we linearly scaled the target values to span the range [0,1].
Different parameters of the MLP used in our experiments are presented in Table 13.4
and Table 13.5 along with classification results. In notation nu,—nu,—nus, nu; (i = 1-3) is
the number of units in the input, hidden, and output layers of the neural network,
respectively. The number of input units of the network is equivalent to the number of
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TABLE 13.4
MLP Percentage of Correct Classification on the Test Data Set
FY FY FY Young

Image Features/BPNN Parameters Smooth Medium Def. Ice Nilas ow Total
ERS mean and

texture/16-20-6, 100 cycles 82.3 55.1 71.9 82.9 52.4 76.9 66.0
RADARSAT mean and

texture/16-20-6, 100 cycles 68.5 70.9 51.2 89.5 72.6 40.0 70.7
ERS, RADARSAT mean and

texture/32-40-6, 300 cycles 88.5 78.3 80.5 93.8 82.4 96.2 83.9
ERS, RADARSAT mean and

texture, Meteor mean/33-40-6,

300 cycles 99.2 87.1 84.6 94.1 98.2 100.0 91.2

input image features and nuz corresponds to the number of ice classes. We found
sufficient to have one layer of hidden neurons. The number of units in this layer is
determined empirically. In Section 13.4.6 we use a pruning method to evaluate the
number of hidden neurons more precisely. This number should generally correspond to
the complexity of the task. The more neurons are in the hidden layer, the more precise the
achieved approximation of the input-output mapping function. It is known that the fine
approximation of the training data set does not necessarily lead to the improved gener-
alization of the neural network, i.e., the ability to classify previously unseen data. There-
fore, nu, is determined as a compromise between the two factors and it usually increases
with increasing the nu;.

The following parameters are used for the MLP training: the learning rate 1 and the
momentum parameter « are set to 0.5 and 0.2, respectively. The weights of the MLP are
randomly initialized before training. They are updated after each presentation of the
training vector to the neural network, that is, online learning is used. At each training
cycle all vectors of the training data set are selected at random and sequentially provided
to the classifier. The activation function is the standard logistic sigmoid function. In the
experiments below we present accuracies estimated using the test data set. The absolute
differences between the total classification accuracies of the test data set (Table 13.4 and
Table 13.6) and those of the training data set (not shown) are less than 1.1 percent point,
which indicates good generalization of the trained algorithms.

TABLE 13.5

MLP Percentage of Correct Classification on the Test Data Set Using Only Mean Values of Sensor
Brightness and a Reduced Set of Texture Features (Last Row)

FY FY FY Young
Image Features/MLP Parameters Smooth Medium Def. Ice Nilas (0)%Y Total
ERS and RADARSAT mean
values/2-10-6, 80 cycles 91.5 68.3 711 82.7 78.1 100.0 75.5
ERS, RADARSAT, and Meteor
mean values/3-10-6, 80 cycles 99.2 87.0 69.4 84.0 97.0 100.0 84.8

ERS and RADARSAT mean values,
fourth-order central moment,
cluster shade, Meteor mean
value/7-6-6, 200 cycles 99.2 84.6 81.8 93.1 97.3 100.0 89.5
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TABLE 13.6
LDA Percentage of Correct Classification on the Test Data Set
FY FY FY Young

Image Features Smooth  Medium  Def. Ice Nilas ow Total
ERS mean and texture 93.1 50.6 67.9 81.4 55.2 92.3 64.6
RADARSAT mean and texture 43.1 60.6 65.9 89.1 60.9 46.2 68.5
ERS and RADARSAT mean and texture 91.5 74.4 80.6 93.2 81.3 100.0 82.6
ERS, RADARSAT mean and

texture, Meteor mean 99.2 86.6 81.7 93.4 97.4 100.0 90.1

13.4.3 MLP Performance for Sensor Data Fusion

13.4.3.1 ERS and RADARSAT SAR Image Classification

The estimated accuracy for separate classification of ERS and RADARSAT images by the
MLP-based algorithm are shown in the first two rows of Table 13.4. The mean value of
image brightness and image texture are used in both cases. As evident from the table, the
single source classification provides poor accuracy for several ice classes, such as FY ice,
nilas, and OW. This is expected since corresponding clusters are difficult to separate
along axes of the scatterplot in Figure 13.5a. OW, which is visually dark in RADARSAT
and bright in ERS images, is largely misclassified as FY smooth ice in RADARSAT image
and classified with higher accuracy in ERS images. The evaluated total classification
accuracies are 66.0% and 70.7% for ERS and RADARSAT, respectively.

13.4.3.2 Fusion of ERS and RADARSAT SAR Images

The joint use of ERS and RADARSAT image features increases the number of correctly
classified test vectors to the value of about 83.9% which is 17.9 and 13.2 percent points
higher than those values obtained using ERS and RADARSAT SAR separately. It is
known that the radar signatures of sea ice vary across different Arctic regions (see for
example Ref. [54] for multi-year ice) and are subject to the seasonal changes [35] that
should influence the classifier performance. The number of ice types discriminated is
maximal in winter and less in other seasons. From late spring to late summer, only two
classes, namely, ice and water are most likely to be separated [4]. This limits the classifier
applicability to the particular season that the classifier is trained for and to a certain
geographical region.

As seen from the table, the improvements are observed for all ice classes. The classifi-
cation accuracy of OW is much higher, due to the incorporation of polarimetric informa-
tion. This increase is as much as 56.2 and 19.3 percent points compared with RADARSAT
and ERS images classified separately. Classification of the dual polarization data not only
facilitates separation of classes with large polarization ratios, but also those with relatively
small ratios, which have similar tonal signatures on ERS and RADARSAT images. The
improvement in classification of young ice, medium, and rough FY ice with a pronounced
texture, can be due to incorporation of texture features in the classification discussed in
the next sections. The latter factor can also explain the higher increase in accuracy
observed in our experiment as compared with previous studies [30], which demonstrated
10 percent points increase in the total classification accuracy (63.6% vs. 52.4%) for the
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three ice types using fully polarimetric data obtained at C-band, although the direct
comparison of the results is rather difficult.

13.4.3.3 Fusion of ERS, RADARSAT SAR, and Meteor Visible Images

Combination of visible and SAR images improves estimated accuracy up to 91.2% (the
last row in Table 13.4). The increase in classification accuracy gained by fusion of a
single polarization SAR (ERS-1) with Landsat TM images was demonstrated earlier by
using maximum likelihood classifier [24]. Our results show that visual data are also
useful in combination with the multi-polarization SAR data. A significant improvement
of about 16 percent points is observed for nilas, since the optical sensor has a large
capacity to discriminate between nilas and OW (see Figure 13.5b). An increase in
classification accuracy is also observed for the smooth and deformed FY ice because
less of their test vectors are misclassified as nilas. The improvement is insignificant for
OW and young ice because these classes have already been well separated using the
polarimetric data set. It should be mentioned that the importance of optical data for
classification of OW using C-band should increase in the near range because polariza-
tion ratio (VV/HH) decreases with decreasing incident angle [55] and is small in the
directions close to nadir. Another important factor favoring incorporation of optical clear
sky data is the generalization of the classification algorithm over the images containing
OW areas, acquired under different wind conditions (not available in this study). Since
backscattering from OW, among other factors, depends on wind speed and direction
[55], it would be more difficult for a classifier utilizing only polarimetric information to
generalize well over OW regions, unless wind speed and direction, obtained from the
other data sources (scatterometer derived wind fields, ground-truth data) are presented
to the classifier.

13.4.4 LDA Algorithm Performance for Sensor Data Fusion

The classification accuracy of the LDA algorithm, estimated using the same combinations
of image features as for MLP are presented in Table 13.6. The MLP slightly outperforms
the LDA algorithm with an accuracy increase of 1.2-2.2 percent points for different feature
combinations. In interpreting this result we should mention the close relationship be-
tween neural networks and traditional statistical classifiers. It is shown that a feed
forward neural network without hidden layers approximates an LDA [25], and multi-
layer neural network with at least one hidden layer of neurons provides nonlinear
discrimination between classes. For the performance and selection of the classifier, a
structure of the input space, the form of clusters, and their closeness in the feature
space, are of primary importance. If the clusters have a complex form and are close to
each other, construction of nonlinear decision boundaries may improve discrimination.
By experimentally comparing LDA- and MLP-based algorithms, we compare linear and
nonlinear discriminant methods applied for the sea ice classification problem. Our results
suggest that the used feature space is fairly simple, and that the ice classes can be linearly
separated piecewise. Construction of nonlinear decision boundaries can only slightly
improve classification results. The assessed classification accuracies for individual classes
are different. Some ice classes are better classified by the LDA algorithm, but there is a
reduction in classification accuracy for the other classes. Taking into account the longer
training time for MLP, compared with the LDA algorithm (5 min 59 sec vs. only 12 sec



312 Image Processing for Remote Sensing

respectively?) the latter may be preferable when the time factor is important. However, a
greater reduction of training and classification time can be gained by using less input
features or even just using image brightness values, since computation of texture is
time consuming (31 min 39 sec, 16 parameters over the 2163 x 2763 single image in
nonoverlapping window?). Therefore, in the next section we will empirically evaluate
the usefulness of texture computation for a multi-sensor data set.

13.4.5 Texture Features for Multi-Sensor Data Set

Assuming that texture is useful for classification of single polarization SAR data
[6,9,10,38—41], the question that we would like to address is ““are the texture features
still useful for classification of the multi-polarization data set?”” For this purpose the MLP
is trained using only mean values of image brightness, and the test results obtained (Table
13.5, the first two rows) are compared with those presented earlier (Table 13.4, the last two
rows), where texture is used. By comparing them, one notices the increase of total
classification accuracy from 75.5% (no texture) to 83.9% when texture is computed for a
combination of ERS and RADARSAT. The improvement gained by the incorporation of
texture is largest for the FY rough ice, young ice, and nilas.

It is interesting to mention that computation of texture features for the dual polarization
data set (VV and HH) provides almost the same accuracy (83.9%) as reached by the fusion
of data from all three sensors without texture computation (84.8%), as shown in the
second row of Table 13.5. This is useful because visual images may be unavailable due
to the weather or low light conditions so that texture computation for the polarimetric
data set can, at least partially, compensate for the absence of optical data. As expected, sea
ice classes with a developed texture, such as young and deformed first ice, are better
classified when texture features are computed for the dual polarization data set, while the
estimated classification accuracy of other classes are higher using brightness from all
three sensors without texture computation. The texture features are still useful when data
from all three sensors are available, gaining an improvement of 6.4 percent points (91.2%
vs. 84.8%).

13.4.6 Neural Network Optimization and Reduction of the Number of Input Features

In the previous sections we considered texture features as comprising one group.
Nevertheless, some of the selected features may carry similar information on sea ice
classes, thus increasing the dimensionality of the input feature space and necessitating
the use of larger training data sets. To exclude the redundant features and simultan-
eously optimize the structure of the neural network we apply pruning methods [56] that
trim or remove units or links of the neural network (depending on the method), and
evaluate some parameters of neural network performance. The stepwise LDA is one of
the methods that can be used for the analysis and selection of the input features for the
linear classifier; however, application of this method may not be optimal for the non-
linear MLP.

233 input features, 300 training cycles for MLP, Sun Blade 100 workstation with 500 MHz UltraSPARC II CPU
are used.
*The computation, perhaps, can be made faster by the code optimization.
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FIGURE 13.6
Change of the sum-squared error during initial training and pruning of the MLP.

The largest trained neural network (33-40-6) is selected for the experiments. During
pruning the redundant units or links are sequentially removed. After this the neural
network is additionally trained to recover from the change in its structure. Figure 13.6
shows the change of sum-squared error during initial training and pruning using the
skeletonization algorithm [57]. This is a sensitivity type algorithm that estimates the
relevance of each unit by computing derivative of a linear error function with respect to
the switching off and on of the unit using attenuation strength parameter. These errors
propagate backward using a similar algorithm to that used for training of the MLP. The
picks in the error plot correspond to removal of the input and hidden units. Approxi-
mately half of the input and several hidden units are removed at the middle of the
pruning (letter A). As shown, their removal at this stage does not strongly effect classi-
fication. Increasing the number of removed units causes the MLP performance on the
training data set to decrease. This process continues until only three input units, corre-
sponding to the three sensor image brightnesses and six hidden units, are left (letter B in
Figure 13.6). In the next section the two neural networks similar to those obtained at the
end and at the middle of pruning will be analyzed.

13.4.6.1 Neural Network with No Hidden Layers

We start with the description of the neural network consisting of three input and no
hidden units. Its Hinton diagram is shown in Figure 13.7. Connections between the input
and output units are represented by squares in the diagram. The size and color of the
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FIGURE 13.7
The Hinton diagram of the MLP with no hidden layers (3-6). The squares at the diagram represent weights
between input (no. 1-3) and output units (no. 4-9) of the neural network. The size of the squares lineally scales
with the absolute value of weights from 20.0 to 0, dark and white colors mark positive and negative weights,
respectively.

squares correspond to the strength of the connections, and their sign, respectively. In a
neural network without hidden layers these weights affect the incoming signals, directly
defining the contribution of each sensor (i.e., input unit) to the class outputs. As known,
this neural network provides a linear discrimination between classes.

Analyzing the diagram, we find the large Meteor image values, which were changed by
positive weight connections, (last column in the diagram), increase the FY ice output
signal, and correspondingly, a posterior probability of the input vector to belong to the FY
ice. Simultaneously, the probability for nilas class is reduced due to the negative weight
between the respective input and output units. The high ERS image values increase FY
deformed ice output through the positive weight connection (first column in the diagram)
and decrease it for smooth and medium deformation FY ice. The test vector most
probably belongs to OW when the ERS image value is high and the RADARSAT image
value is low. There is no redundancy in using these sensors: if FY deformed ice can be
separated using a combination of ERS and Meteor sensors, RADARSAT SAR data need
not be involved. The latter is also true for the young ice. The other sensors can indirectly
influence the assignment of the vector to a particular class by decreasing or increasing
outputs for the other classes.

13.4.6.2 Neural Network with One Hidden Layer

Neural networks obtained in the middle stages of the pruning (Figure 13.6, letter A)
correspond to some compromise between neural network complexity (i.e., number of
input and hidden units) and the RMS error for the training data set. An increase in this
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error does not necessarily imply a decrease in the classification rate for the test data set,
since generalization of the neural network may improve. This neural network still has a
number of hidden units and can thus provide nonlinear discrimination between ice
classes. The outputs of the neural network on presenting the feature vector to the classifier
are proportional to the class conditional probabilities [25] for the type of neural network
and target coding schema used here. During several pruning trials, neural networks of
different structure and with different combinations of input features are obtained, which
implies the existence of several minima in the multi-dimensional error surface. The
application of pruning methods does not guarantee finding a global minimum, thus
several MLPs with similar performances on the test data set are obtained.

The Hinton diagram of the MLP with the structure 7-6-6 is shown in Figure 13.8. In
addition to the brightness for each of the three sensors, it uses two texture features: a
fourth-order central statistical moment and a cluster shade for ERS and RADARSAT
images. For its analysis it is convenient to represent the performance of each hidden
neuron as a linear combination of several input features, weighted by a sigmoid activation
function. There are six such combinations (see first six rows of the diagram), correspond-
ing to the six hidden neurons. In the first two of these, the individual sensor brightness
values play a dominant role through the large positive weights. The contribution of each
combination to the formation of different class outputs can be analyzed by looking at
weights between the hidden and output units (shown in the last six columns of
the diagram and marked by arrows). The role of the first two combinations is similar to
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The Hinton diagram of the MLP with one hidden layer of neurons (7-6-6). The squares at the upper left-hand
corner of the diagram represent weights between input (no. 1-7) and hidden units (no. 8-13), the squares at the
lower right-hand corner of the diagram represent weights between hidden and outputs units (no. 14-19) of the
neural network. The size of the squares lineally scales with the absolute value of weights from 15.0 to 0, dark and
white colors mark positive and negative weights, respectively. The used abbreviation: CS, cluster shade.
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the individual sensor contributions in the network without hidden neurons described
earlier. However, the availability of the sixth combination, where the ERS and RADAR-
SAT image brightness are combined together, modifies the weight structure. For example,
a negative contribution of ERS brightness (1st hidden unit) to the FY medium ice output is
partially compensated by positively weighted ERS brightness of the 6th combination.
Eventually, only RADARSAT brightness plays a dominant role in output of FY medium ice.

From the diagram it is seen that a cluster shade feature contributes little to the sea ice
separation due to the small weights connecting the corresponding input units with
hidden units (2nd and 6th columns). Perhaps this feature can be removed when data
from all three sensors are used in classification since inclusion of cluster shade provides
only about a 0.5 percent point increase in classification accuracy (5-6-6, 200 cycles). The
fourth-order statistical moment mostly takes part in formation of FY deformed and young
ice outputs through the 3rd, 4th, and 5th hidden units. This observation is supported by
the increase in classification accuracy for these classes when the texture features are used
(last row of Table 13.5). It is evident from the classification results that the role of texture
increases with decreasing number of sensors used in classification (8.4 vs. 6.4 percent
points for 2 and 3 sensors, respectively). More texture features in addition to those
shown in the diagram may be required for the two-sensor image classification (ERS and
RADARSAT). The suitable candidates are variation and entropy. Analysis of the pruning
sequences suggests that texture features computed over VV and HH polarization images
are not fully redundant (see also Ref. [58]); therefore, it seems reasonable to use the same
feature sets for ERS and RADARSAT images.

13.4.7 Classification of the Whole Image Scene

Sea ice maps produced by different classifiers (Table 13.4 and Table 13.6) are presented in
Figure 13.9 and Figure 13.10 for the MLP and LDA-based algorithms, respectively.

(a) (b) (© (d)

FY smooth | FY medium deformation [ FY deformed

- Young ice - Open water - Nilas

FIGURE 13.9 (See color insert following page 240.)
MLP sea ice classification maps obtained using: (a) ERS; (b) RADARSAT; (c) ERS and RADARSAT; and (d) ERS,
RADARSAT, and Meteor images. The classifiers’ parameters are given in Table 13.4.
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(a) (b) (c) (d)

FY smooth [ FY medium deformation [l FY deformed Il Not classified
B Youngice [l Open water I nNilas

FIGURE 13.10 (See color insert following page 240.)
LDA sea ice classification maps obtained using: (a) ERS; (b) RADARSAT; (c) ERS and RADARSAT; and (d) ERS,
RADARSAT, and Meteor images.

No postclassification filtering or smoothing is performed. The color legend is based on the
WMO-defined color code with the following discrepancies: firstly, different gradations of
green reflect ice surface roughness and, secondly, the red color marks OW, to separate it
from nilas. The ERS and RADARSAT image classification maps are visually rather poor,
and this is independent of the type of algorithm used. Some parts of the polynya (regions
A and B in Figure 13.9) are misclassified as FY ice and, conversely, some areas of the FY
ice (regions C and D) are misclassified as nilas. This also applies to the LDA classification
maps (Figure 13.10), which appear a bit more ““noisy” because some image areas are left
unclassified by the LDA algorithm (dark pixels) and some areas of smooth FY ice are
largely misclassified as OW in the case of the RADARSAT image in Figure 13.10b. Due to
classification errors, some of the objects cannot be visually identified in the images in the
case of the single sensor classification.

Sea ice classification is improved by combining the two SAR images (Figure 13.9c and
Figure 13.10c). OW, young, and FY ice are much better delineated using dual polarization
information. Classification of sea ice using three data sources (Figure 13.9d and Figure
13.10d) in general corresponds well to the visual expert classification shown in Figure
13.11, but with more details in comparison to the usual manually prepared sea ice maps.
To generalize ice zones well (some applications do not require detailed ice information)
and reduce classification time, larger ice zones are usually manually outlined, partial
concentrations of ice types within these zones are (often subjectively) evaluated
and presented in an ice chart using the WMO egg code (not used in Figure 13.11). As
can be seen from the examples the detailed presentation of information in automatically
produced sea ice maps can be useful in tactical ice navigation, where small-scale ice
information is needed. For applications that do not require a high level of detail,
the partial ice concentrations can be calculated more precisely based on the results of
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N74°

N73°

N72°

N71°

E82° E84°

FIGURE 13.11

Expert interpretation of RADARSAT Scan SAR image (30 April 1998) made by N. Babitch (Murmansk Shipping
Company). (1) The darker areas are mainly large thick FY ice while the brighter areas are young ice. The darkest
areas between the FY and young ice is nilas. (2) Heavily deformed thin and medium thick FY ice with some
inclusions of young ice. (3) Nilas (dark) and young ice (bright). (4) A difficult area for interpretation. Probably it
is a polynya with a mixture of water and thin ice types such as grease ice and nilas. (5) Mixture of open water and
very thin ice. (6) Fast ice of various age and deformation. The darker areas are undeformed ice while brighter
areas are more deformed ice. The brightest signature in the river estuaries can be due to freshwater ice from the
rivers. (6a) Larger floes of fast ice drifting out from the Yenisei estuary. (7) The bright lines in the fast ice are ship
tracks. (From O.M. Johannessen et al., SAR sea ice interpretation guide. NERSC Tech. Rep. No. 227, Bergen,
Norway, 2002. With Permission.)

automatic classification. The major difference between expert and automatic classifica-
tions is in the assignment of bright segment no. 2 in the upper right hand corner of Figure
13.11, which has been assigned to heavily deformed FY ice by ice expert and to young ice
in our case. Some discrepancies in classification results can arise because in situ and
optical data were not used for the expert classification.

In many cases, the incorporation of low-resolution visible information reduces the noise
in the classification, while preserving small-scale ice features. The nilas and fast ice
(regions E and F in Figure 13.9d, respectively) are correctly classified, while some rela-
tively thin strips of rafted ice in polynya (region G) are still retained in the classified
images. Classification maps produced by the algorithms look rather similar except
for some minor details: the strips of rafted ice (region G) are better delineated by the
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MLP-based algorithm and the region of OW in the low right hand corner of the images
(marked by letter H in Figure 13.9d) is better classified by LDA-based algorithm. It is
interesting to mention that in the latter case only, the transition from OW to nilas and then
to young ice is correctly outlined in the rather complex region (H). Such transition zones
are observed many times during the expedition and this classification result seems
reasonable. It is also interesting to see how fast ice in region F in Figure 13.9d is delineated
by different classifiers (Figure 13.9 and Figure 13.10a—d).

13.5 Conclusions

In this paper we have presented a sea ice classification algorithm that fuses data of
different satellite sensors. The algorithm is based on a multi-layer backpropagation neural
network and utilizes ERS, RADARSAT SAR and low-resolution optical images. Radio-
metric correction, spatial alignment, and co-registration of images from these three
sensors have been done before their fusion. The selection of image test and training
regions is based on in situ observations made onboard the Russian nuclear icebreaker
““Sovetsky Soyuz” in April, 1998. The image features used include image moments, gray-
level co-occurrence matrix texture, and autocorrelation function-based features for the
SAR image and mean brightness for visible image.

The empirical assessment of the algorithms via the independent test data set showed
that the performance of MLP with only one data source (SAR) is rather poor (66.0% and
70.7% for the ERS and RADARSAT SAR, respectively), even if texture features are used in
the classification. A substantial improvement in sea ice classification is achieved by
combining ERS and RADARSAT SAR images obtained at two different polarizations
(VV and HH). Fusion of these two SAR data types increases the classification accuracy
up to 83.9%. This noticeable improvement is observed for all ice classes. These results
suggest that an improvement in ice classification can be also expected for ENVISAT
ASAR operating at alternating polarization mode and for future RADARSAT-2 SAR
with its several multi-polarization modes. Incorporation of visual data provides add-
itional information, especially on the nilas and OW classes. The estimated total classifi-
cation accuracy reaches 91.2% when the low-resolution visual data are combined with the
dual polarization data set. In cases where visual data are unavailable, computation of
texture features is found to be particularly useful, since it can, at least partially, compen-
sate for the reduction in accuracy due to the absence of low-resolution visual data.

Both of the considered MLP and LDA algorithms show similar results when applied for
sea ice classification. This implies that the ice classes can be linearly separated piecewise
in multi-dimensional feature space. Incorporation of texture features into the classifica-
tion improves the separation of various ice classes, although its contribution decreases
with an increasing number of sensors used in classification. Computation of texture is
time consuming. Application of a pruning method allowed us to reduce the number of
input features of the neural network, to adjust the number of hidden neurons, and, as a
result, to decrease classification time. These methods are not free from entrapment in the
local minima of the error surface, thus the application of evolutionary optimization
methods for the neural network structure optimization is a possible future development.
The other interesting direction of research can be in combining the outputs of several
classifiers in an MCS [60]. The differences in classifier performances for different ice
classes (especially in single polarization image classification) can be accommodated in
MCS to improve overall classification accuracy.
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In this study we used an extensive set of in sifu observations collected on board the
icebreaker sailing in ice; however, the studied area and the number of observations are
still quite small to describe the variety of possible ice conditions. The presented results
should therefore be taken with care, because they are obtained for a relatively small
geographical region and during the short time period in cold conditions. With new
data acquisition it is necessary to assess the generalization of the algorithm to a larger
geographical region and to a larger number of seasons.
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14.1 Introduction

Remotely sensed images are increasingly being used for collection of spatial information.
A wide development in sensor systems has occurred during the last decades, resulting in
improved spatial, temporal, and spectral resolution. The collection of data by remote
sensing is generally more efficient and cheaper than by direct observation and measure-
ment on the ground, although still of a varying quality. Data collected by sensors may be
affected by atmospheric factors between sensors and the values reflected on the earth’s
surface, local impurities on the earth’s surface, technical deficiencies of sensors and other
factors. In addition, only the reflection of the sensor’s signal or of the sunlight on the
earth’s surface is being measured, and no direct measurements are made. Consequently,
the quality of maps produced by remote sensing needs to be assessed [1].

Another major issue of interest concerns the ontological interpretation of remote-sensing
imagery. The truth as it supposedly exists at the earth surface is due to what one wishes to
see. This can be formalized in terms of formal ontologies, although these may be subject to
changes in time as well, and also a subjective interpretation is often being given.
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Image classification and segmentation are important concepts in this respect. A seg-
mentation of an image yields segments of more or less homogeneity supposed to be
applicable on the earth’s surface. In fact, a segmentation procedure can be done math-
ematically, without any more knowledge of the earth than is present in the data, hence
governed by the conditions of the sensor on the earth’s surface and in the atmosphere.
Image classification leads to segmentation with meaningful contents. Meaningful is either
what is described by the ontologies, or what a researcher aims to find. There still is a large
discrepancy between the image representation on one hand and the earth’s surface
processes on the other hand.

After a classification is being carried out, its accuracy can be determined if ground
truth is available. Classification accuracy refers to the extent to which the classified
image or map corresponds with the description of a class on the earth’s surface. This is
commonly described by an error matrix, in which the overall accuracy and the accur-
acy of the individual classes are calculated. The k-statistic is then used for testing on
homogeneity [2]. Its use is somewhat controversial, because its value depends strongly
on the marginal distributions [3]. Indeed, it measures the strength of agreement
without taking into account the strength of disagreement. Another criticism, which
we will not address in this chapter, is that it requires the presence of well-identifiable
objects. In many ontologies, though, we realize that objects at the earth’s surface are
fuzzy or vague. In such cases, it appears to be more convenient to compare member-
ship values.

This chapter aims to focus on an alternative to the «-statistic. To do so, we consider on
pairwise comparisons, dealing with the structure of disagreement between categories.
A way to do so is by using the Bradley-Terry (BT) model [4]. Based on the logistic
regression model, it may provide more details on the strength and direction of disagree-
ment. The chapter builds on a previous study published recently [5]. It extends that paper
by addressing another case study, providing more details at various places and by using a
very large number of test points. We also provide additional discussion on the qualities of
the BT model.

The aim of research described in this chapter is to study the use of the BT model as an
alternative measure for association in the remotely sensed image for the k-statistic. To do
so, we implement and interpret a test of significance of the BT model for paired prefer-
ences in a multi-variate texture-based segmentation of geological classes from an
ASTER image in Mongolia. An error matrix is obtained by validation with an existing
geological map.

14.2 Concepts and Methods

A common aim in classifying a multi-spectral image is to automatically categorize all
pixels in the image into classes [6]. Each pixel in the image is assigned in a Boolean
fashion into one class. As a result, a thematic layer from the multi-spectral image emerges.
Several classification algorithms applicable to thematic mapping from satellite images
exist [7]. Supervised image classification depends on differences in the reflection on the
earth’s surface and hence, in bare areas, on the composition of the material on the earth’s
surface. Pixel-by-pixel spectral information is used as the basis for automated land-cover
classification. A classification algorithm gives a classified thematic layer. Such a form of
classification yields, therefore, both a segmentation of the image (i.e., different segments
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emerge) and a classification (i.e., each segment has a meaning within some ontology). This
is particularly the case if a supervised classification is carried out. A feature of this
method, often recognized as a drawback, is that it yields a large number of very small
segments, hence a highly fragmented thematic layer.

Next, the thematic layer is assessed in terms of accuracy by comparing image class
samples to reference samples [8]. Representative samples are selected for each class from
different locations of the image. The amount of training data usually represents between
1% and 5% of the pixels [9].

Accuracy assessment of classification is usually carried out by evaluating error
matrices. An error matrix is the square contingency table. The columns represent the
reference data and the rows represent the classified data [2,9]. On the basis of the
error matrix, overall classification accuracy, producer’s accuracy, and the user’s accur-
acy are calculated. In addition, the «-statistic for each individual category within the
matrix can be calculated. In all these cases, the accuracy of any individual pixel is
associated in a strictly Boolean fashion, that is, the classification is either correct or
incorrect.

14.2.1 The k-Statistic

The k-statistic derived from the error matrix is a measure of agreement [2]. It is based on
the difference between the actual agreement in the error matrix and the chance agree-
ment. The sample outcome is the k statistic, an estimate of k. The actual agreement refers
to the correctly classified pixel indicated by the major diagonal of the error matrix. «
measures the accuracy of classification in terms of whether the classification is better than
random or not. To describe k we assume a multinomial sampling model: each class label
is derived from a finite set of possible labels. To calculate the maximum likelihood
estimate k of k and a test statistic z, the error matrix is represented in mathematical
form. Then « is given by

. Po—Pc
K= 1T o (14.1)

where py and p. are the actual agreement and the chance agreement. Let 1;; equal the

number of samples classified into category i, as belonging to category j in the reference
data. The k value can be calculated using the following formula:

k k
n Z i — Z Niy Ny
i=1 - i=1 (142)

n? =3 ning
i=

k:

where k is the number of classes, n;; is the number of correctly classified pixels of category
i, n;, is the total number of pixels classified as category i, n; is the total number of actual
pixels in category i, and 7 is the total number of pixels.

The approximate large sample variance of k equals:

(14.3)

1<ma—ﬁn 2(1 — 91) (2919, — 93) %1;mﬂm—4%v
n

= a ey (1— 0. (1 - 0,)°
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where

1 &
Y = . Z 1i;
i=1
1 k
Oy = 2 ; Niy Ny
1k
V=3 > naniy +ni)
i=1

1 k
V=3 > nilnig + )
i=1

Each of the terms ; can be easily calculated, and hence the «-statistic has found its place
in a wide range of (semi-)automatic classification algorithms.

Apart from being a measure of accuracy, the conditional k coefficient k; is defined as the
conditional agreement for the ith category. It can also be used to test the individual class
(category) agreement. The maximum likelihood estimate of «; is given by

n-nj — NigNy

Kj=—"79¥—+ (14.4)
- MNiy — Mg Ny

Its approximate large sample variance is given by

n - (niy — ni)

var(k;) = slini(ni +nyy —n-ng) +n-n(ng — iy — ny 4 n)l (14.5)

iy (1 — 1y

A test of significance for a single error matrix is based on comparing the obtained classifi-
cation with a random classification, that is, with assigning random labels to the individual
classes at each of the test points. For this test the null hypothesis equals Hy: k = 0, thatis, the
association does not significantly differ from that obtained from a random classification.
The alternative hypothesis equals H;: k # 0, that is, the value of « significantly differs from
that obtained from a random classification. The test statistic equals

=K (14.6)

v/ var(k)

A similar test of significance can be carried out for each individual category using the
value of the conditional «; and its variance.

Different classifications may yield different error matrices. Possibly, one classification
significantly improves on the other one. Comparing two error matrices, we might there-
fore be willing to test the null hypothesis Hy: k1 = k5, against the alternative hypothesis
Hi: k1 # Ky, that is, no significant difference occurs in association between the two error
matrices. A test statistic for the significance of these two error matrices is given by

S
V/var(ky) + var(k,)

712 (14.7)

Computation of the z or the z;, statistic then allows us to evaluate Hy, as the distribution
of z and that of z;, is approximately a normal distribution. Hy is rejected if z > z, > (or
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equivalently z1, > z,,»), where z,,» is the 1 — /2 confidence level of the two-tailed
standard normal distribution. A similar argument applies if a one-sided test is to be
carried out, for example, to investigate a claim that some new classification procedure is
better than another one.

14.2.2 The BT Model

The BT model makes a pairwise comparison among # individuals, classes, or categories. It
focuses on misclassifications without considering the total number and the number of
correctly classified pixels (or objects). First we follow the model in this original form.
Below, we address the issue of including also the total number of classified pixels. In the
BT model, classes are ordered according to magnitude on the basis of misclassifications.
The ordering is estimated on the basis of pairwise comparisons. Pairwise comparisons
model the preference of one individual (class, category) over another [3].

The BT model has found applications in various fields, notably in sports statistics. The
original paper [4] considered basketball statistics, whereas a well worked-out example on
tennis appears in Ref. [3]. Both examples include multiple confrontations of various teams
against one another. The BT model can be seen as the logit model for paired preference
data. A logit model is a generally applicable statistical model for the relation between the
probability p that an effect occurs and an explanatory variable x by using two parameters
a and B. It is modeled as In(p/(1-p) = a + B x, ensuring that probability values are
between 0 and 1 [10]. To apply the BT model to the error matrix, we consider the pair of
classes C; and C; and let II; denote the probability that C; is classified as C; and let II;
denote that C; is classified as C;. Obviously, II;; = 1-11;;.

The BT model has parameters §8; such that

10g1t(Hl]) = IOg (HU/H]’) =Bi— B] (14.8)

To interpret this equation, we note that equal probabilities emerge for C; being classified
as Cjand C; being classified as C;if [1;; = 1l;; = 1/2 hence if logit(Il;;) = 0, therefore 8; = B;.
If IT;; > 1/2 i.e., if C;is more likely to be classified as C; than C; to be classified as C;, then 8; >
B;- A value of B; larger than that of 8; indicates a preference of misclassification of C; to C;
above that of C; to C;. R

By fitting this model to the error matrix, one obtains the estimates 3; of the 3;, and the
estimated probabilities f[i]- that C; is classified as C; are given by

fl; = P - ) (14.9)
1+exp(B; — B))

Similarly, from the fitted values of the BT model, we can derive fitted values for
misclassification,
i P—— (14.10)
Mij — i

where fi;; is the expected count value of C; over C;, that is, the fitted value for the
model. The fitted value of the model can be derived from the output of SAS or SPSS.
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14.2.3 Formulating and Testing a Hypothesis

In practice, we may be interested to formulate a test on the parameters. In particular we
are interested in whether there is equality in performance of a classifier for the different
classes that can be distinguished. Therefore, let Hy be the null hypothesis: the class
parameters are equal, that is, no significant difference exists between g; and ;. The
alternative hypothesis equals Hi: B; # B;. To test Hy against H;, we compare Bi — ,3] to
its asymptotic standard error (ASE). To find the ASE, we note that var(B; — B ) = var(B;) +
Var(B]) -2 COV(BUB]) Using the estimated variance-covariance matrix, each ASE is
calculated as the square root of the sum of two diagonal values minus twice an off-
diagonal value. An approximate 95% confidence interval for 8; — B; is then seen to be
equal to Bi — ,8] + 1.96 x ASE. If the value 0 occurs within the confidence interval, then
the difference between the two classes is not significantly different from zero, that is, no
significant difference between the class parameters occurs, and Hy is not rejected. On the
other hand, if the value 0 does not occur within the confidence interval, then the differ-
ence between the two classes is significantly different from zero, indicating a significant
difference between the class parameter and Hj is rejected in favor of H;.

14.3 Case Study

To illustrate the BT model in an actual remote-sensing study, we return to a case
described in Ref. [11]. It was shown how spectral and spatial data collected by means of
remote sensing can provide information about geological aspects of the earth surface. In
particular in remote, barren areas, remote-sensing imagery can provide useful informa-
tion on the geological constitution. If surface observations are combined with geologic
knowledge and insights, geologists are able to make valid inferences about subsurface
materials. The study area is located in the Dundgovi Aimag province in Southern
Mongolia (longitude: 105°50'-106°26" E and lattitude: 46°01'—46°18' N). The total area is
1415.58 km?. The area is characterized by an arid, mountainous-steppe zone with eleva-
tions between 1300 and 1700 m. Five geological units are distinguished: Cretaceous basalt
(K1), Permian—Triassic sandstone (PT), Proterozoic granite (yPR), Triassic-Jurassic gran-
ite (yT3-J1) (an intrusive rock outcrop), and Triassic—Jurassic andesite (aT3-J1).

For the identification of general geological units we use images from the advanced
spaceborne thermal emission and reflection radiometer (ASTER) satellite, acquired on 21
May, 2002. The multi-spectral ASTER data cover the visible, near infrared, shortwave and
thermal infrared portions of the electromagnetic spectrum, in 14 discrete channels. Level
1B data as used in this study are radiometrically calibrated and geometrically co-regis-
tered for all ASTER bands. The combination of ASTER shortwave infrared (SWIR) bands
is highly useful for the extraction of information on rock and soil types. Figure 14.1 shows
a color composite of ASTER band combination 9, 6, and 4 in the SWIR range. An
important aspect of this study is the validation of geological units derived with segmen-
tation (Figure 14.2a). Reference data in the form of a geological map were obtained by
expert field observation and image interpretation (Figure 14.2b).

Textural information derived from remotely sensed imagery can be helpful in the
identification of geological units. These units are commonly mapped based on field
observations or interpretation of aerial photographs. Geological units often show charac-
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FIGURE 14.1

SWIR band combination of the ASTER image for the
study area in Mongolia, showing different geological
units.

teristic image texture features, for example, in the form of fracture patterns. Pixel-based
classification methods might, therefore, fail to identify these units. A texture-based
segmentation approach, taking into account the spatial relations between pixels, can be
helpful in identifying geological units from an image scene.

For segmentation, we applied a hierarchical splitting algorithm to identify areas with
homogeneous texture in the image. Similar to split-and-merge segmentation each square
image block in the image is split into four sub-blocks forming a quadtree structure. The
criterion used to determine if an image block is divided is based on a comparison between
uncertainty of a block and uncertainty of its sub-blocks. Uncertainty is defined as the ratio
between the similarity values (G-statistic), computed for an image block B, of the two
most likely reference textures. This measure is also known as the confusion index (CI).
The image is segmented such that uncertainty is minimized. Reference textures are
defined by two-dimensional histograms of the local binary pattern and the variance
texture measures. To test for similarity between an image block texture and a reference
texture, the G-statistic is applied. Finally, a partition of the image with objects labeled
with reference texture class labels is obtained [12].

14.3.1 The Error Matrix

Segmentation and classification resulted in a thematic layer with geological classes.
Comparison of this layer with the geological map yielded the error matrix (Table 14.1).
Accuracy of the overall classification equals 71.0%, and the «-statistic equals 0.51. A major
source for incorrect segmentation is caused by the differences in detail between the
segmentation results and the geological map. In the map, only the main geological units
are given, where the segmentation provides many more details. A majority filter of 15 x 15
pixels was applied to filter out the smallest objects from the ASTER segmentation map.
Visually, the segmentation is similar to the geological map. However, the K1 unit is much
more abundant in the segmentation map. The original image clearly shows a distinctly
different texture from the surrounding area. Therefore, this area is segmented as a K1
instead of as a PT unit. The majority filtering did not provide higher accuracy values, as
the total accuracy only increased by 0.5%.
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FIGURE 14.2
(a) Segmentation of the ASTER image. (b) The
geological map used as a reference.

14.3.2 Implementation in SAS

The BT model was implemented as a logit model in the statistical package SAS (Table 14.2).
We applied proc Genmod, using the built-in binomial probability distribution (DIST =
BIN) and the logit link function. The covb option provides the estimated covariance matrix
of the model parameter estimators, and estimated model parameters are obtained with
the obstats option. In the data matrix, a dummy variable is set for each geological class. The
variable for C; is 1 and that for C; is -1 if C; is classified over C;. The logit model has these
variates as explanatory variables. Each line further lists the error value (‘k’) of C; over C;and
the sum of the error values of C; over Cjand C;jover C;, (‘'n’). The intercept term is excluded.

14.3.3 The BT Model

The BT model was fitted to the error matrix as shown in Table 14.1. Table 14.3 shows the
parameter estimates $; for each class. These values give the ranking of the category in
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TABLE 14.1
Error Matrix for Classification

Reality
Classified as PT yT3-J1 K1 aT3-J1 yPR Total
PT 518,326 304 8,772 3,256 13,716 544,374
yT3-J1 805 86,103 0 2,836 3,848 93,592
K1 140,464 95 8,123 13,645 3,799 166,126
aT3-J1 50,825 2,997 827 95,244 2,621 152,514
yPR 23,788 8,082 60 21,226 31,569 84,725
Total 734,208 97,581 17,782 136,207 55,553 1,041,331

Note: PT (Permian and Triassic formation), yT3-J1 (upper Triassic and lower Jurassic granite), K1 (lower
Cretaceous basalt), aT3-J1 (upper Triassic and lower Jurassic andesite) and yPR (Penterozoic granite). The overall
classification accuracy is 71.0%, the overall -statistic equals 0.51.

comparison with the reference category. Table 14.3 also shows standard errors for the ;s
for each class. The 8 parameter for class yPR is not estimated, being the last in the input
series, and is hence set equal to 0. The highest 3 coefficient equal to 1.545 is observed for
class PT (Permian and Triassic formation) and the lowest value is equal to —1.484 for class
K1 (lower Cretaceous basalt). Standard errors are relatively small (below 0.016), indicat-
ing that all coefficients significantly differ from 0. Hence the significantly highest errone-
ous classification occurs for the class PT and the lowest for class K1.

Estimated B; values are used in turn to determine misclassification of one class over
another (Table 14.4). This anti-symmetric matrix shows again relatively high values for
differences of geological classes with PT and lower values for differences with class K1.
Next, the probability of a misclassification is calculated using Equation 14.9 (Table 14.5).
For example, the estimate of probability of misclassifying PT as upper Triassic and lower
Jurassic granite (yT3-J1) is 0.28, whereas that of a misclassification of yT3-]1 as PT equals

TABLE 14.2

data matrix;
input PT yT3J1 K1 aT3]J1 yPR k1 n1 k2 n2 w;

k = (k1/nl);

n = (k1/nl1 + k2/n2);

cards;

Data Matrix Input PT yT3-J1 K1 aT3-]J1 yPR k n; Cards

-1 1 0 0 0 304 1,109

-1 0 1 0 0 8,772 149,236

-1 0 0 1 0 3,256 54,081

-1 0 0 0 1 13,716 37,504
0 -1 1 0 0 0 95
0 -1 0 1 0 2,836 5,833
0 -1 0 0 1 3,848 11,930
0 0 -1 1 0 13,645 14,472
0 0 -1 0 1 3,799 3,859
0 0 0 -1 1 2,621 23,847

proc genmod data = matrix;

model k/n = PT yT3J1 K1 aT3]1 yPR/NOINT DIST = BIN link = logit covb

obstats;
run;
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TABLE 14.3
Estimated Parameters B8; and Standard Deviations se(3;) for the BT Model

PT yT3-J1 K1 aT3-J1 yPR
[;,' . 1.545 0.612 —1.484 0.317 0.000
se(B) 0.010 0.016 0.014 0.010 0.000

Note: See Table 14.1.

TABLE 14.4
Values for 8; — ﬁj Comparing Differences of One Geological Class over Another
PT yT3-J1 K1 aT3-J1 yPR

PT 0.000 —-0.932 -3.029 —1.228 —1.545
yT3-J1 0.932 0.000 —2.097 —0.295 —0.612
K1 3.029 2.097 0.000 1.801 1.484
aT3-J1 1.228 0.295 —1.801 0.000 -0.317
yPR 1.545 0.612 —1.484 0.317 0.000

Note: See Table 14.1.

0.72: it is therefore much more likely that PT is misclassified as yT3-J1, than yT3-J1 as PT.
Table 14.6 shows the observed and fitted entries in the error matrix (in brackets) for the BT
model. We notice that the estimated and observed differences are relatively close. An
exception is the expected entry for the yPR-aT3-J1 combination, where fitting is clearly
eIToneous.

To test the significance of differences, ASEs are calculated, yielding a symmetric matrix
(Table 14.7). Low values (less than 0.02) emerge for the different class combinations,
mainly because of the large number of pixels. Next, we test for the significance of
differences (Table 14.8), with Hy being equal to the hypothesis that B = Bj, and the
alternative hypothesis Hj that §; # B;- Because of the large number of pixels, Hy is rejected
for all class combinations. This means that there is a significant difference between the
parameter values for each of these classes.

We now turn to the standardized data, where also the diagonal values of the error
matrix are included in the calculations.

TABLE 14.5

Estimated Probabilities f[ij Using Equation 14.9 of Misclassifying C; over C; Using
Standardized Data

PT yT3-J1 K1 aT3-J1 yPR
PT 0.28 0.05 0.23 0.18
yT3-J1 0.72 0.11 043 035
K1 0.95 0.89 0.86 0.82
aT3J1 0.77 057 0.14 0.42
yPR 0.82 0.65 0.18 0.58

Note: See Table 14.1.



Use of the Bradley—Terry Model to Assess Uncertainty in an Error Matrix
TABLE 14.6
Observed and Expected Entries in the Error Matrix
PT yT3-J1 K1 aT3-J1 yPR
PT 304 8,772 3,256 13,716
(313) (6,885) (12,255) (6,595)
yT3-J1 805 0 2,836 3,848
(796) (10) (2,489) (4,194)
K1 140,464 95 13,645 3,799
(142,351) (85) (12,421) (3,146)
aT3-J1 50,825 2,997 827 2,621
(41,826) (3,344) (2,051) (41,240)
yPR 23,788 8,082 60 21,226
(30,909) (7,736) (713) (56,625)

Note: See Table 14.1.

TABLE 14.7

Asymptotic Standard Errors for the Parameters in the BT Model, Using the Standard

Deviations and the Covariances between the Parameters

PT yT3-J1 K1 aT3-J1 yPR
PT 0.017 0.011 0.008 0.010
yT3-J1 0.017 0.019 0.016 0.016
K1 0.011 0.019 0.012 0.014
aT3-J1 0.008 0.016 0.012 0.010
yPR 0.010 0.016 0.014 0.010
Note: See Table 14.1.
TABLE 14.8
Test of Significances in Differences between Two Classes
Bi — B ASE t-Ratio H,
PT yT-J1 —0.932 0.017 —54.84 Reject
K1 -3.029 0.011 —280.99 Reject
aT-J1 —2.097 0.019 —108.02 Reject
yPr —1.228 0.008 —145.39 Reject
yT3-J1 K1 —0.295 0.016 —18.08 Reject
aT-J1 1.801 0.012 145.01 Reject
yPr —1.545 0.010 —155.96 Reject
K1 aT-J1 —-0.612 0.016 —-39.47 Reject
yPr 1.484 0.014 108.69 Reject
aT3-J1 yPr -0.317 0.010 —-32.77 Reject

Note: See Table 14.1.

335
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14.3.4 The BT Model for Standardized Data

When applying the BT model, diagonal values are excluded. This may have the following
effect. If C; contains k; pixels identified as C,, and C, contains k, pixels identified as C;,
then the BT model analyzes the binomial fraction k;/(k;+k;). The denominator k; + ks,
however, depends also on the total number of incorrectly identified pixels in the two
classes, say n; for C; and n, for C,. Indeed, suppose that the number of classified pixels
doubles for one particular class. One would have the assumption that this does not affect
the misclassification probability. This does not apply to the BT model as presented above.
As a solution, we standardized the counts per row by defining k = (ky/ny)/(k1/nq + kz/
1) and n = 1. This has as an effect that the diagonals in the error matrix are scaled to 1,
and that matrix elements not on the diagonal contain the number of misclassified pixels
for each class combination. Furthermore, a large number of classified pixels should lead
to lower standard deviations than a low number of classified pixels. To take this into
account, a weighting was done, with weights equal to k; + k, being equal to the number of
incorrect classifications.

Again, a generalized model is defined, with as a dependent variable the ratio k/# and the
same explanatory variables as in Table 14.2. The SAS input file is given in Table 14.9. The
first five columns, describing particular class combinations, are similar to those in Table
14.2, and the final five columns are described above. The variables in the model have also
been described in Table 14.2. Estimated parameters §3;, together with their standard devi-
ations are given in Table 14.10. We note that the largest B; value again occurs for the class PT
(Permian and Triassic formation) and the lowest value for class K1 (lower Cretaceous
basalt). Class PT therefore has the highest probability of being misclassified and class K1
has the lowest probability. Being negative, this probability is smaller than that for Penter-
ozoic granite (yPR). In contrast to the first analysis, none of the parameters significantly
differs from 0, as is shown by the relatively large standard deviations.

Subsequent calculations are carried out to compare differences in classes, as was done
earlier. For example, misclassification probabilities corresponding to Table 14.5 are now
in Table 14.11 and observed and expected entries in the error matrix are in Table 14.12. We
now observe first that some modeled values are extremely good (such as the combin-
ations between PT and yT3-J1) and second, some modeled values are totally different

TABLE 14.9

data matrix;
input PT yT3J1 K1 aT3]J1 yPR k1 n1 k2 n2 w;

k = (k1/n1);

n = (k1/nl1 + k2/n2);

cards;

-1 1 0 0 0 304 518,326 805 86,103 1,109

-1 0 1 0 0 8,772 518,326 140,464 8,123 149,236

-1 0 0 1 0 3,256 518,326 50,825 95,244 54,081

-1 0 0 0 1 13,716 518,326 23,788 31,569 37,504
0 -1 1 0 0 0 86,103 95 8,123 95
0 -1 0 1 0 2,836 86,103 2,997 95,244 5,833
0 -1 0 0 1 3,848 86,103 8,082 31,569 11,930
0 0 -1 1 0 13,645 8,123 827 95,244 14,472
0 0 -1 0 1 3,799 8,123 60 31,569 3,859
0 0 0 -1 1 2,621 95,244 21,226 31,569 23,847

proc genmod data = matrix;
model k/n = PT yT3]J1 K1 aT3]1 yPR/NOINT DIST = BIN covb obstats;
run;
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TABLE 14.10

Estimated Parameters B; and Standard Deviations se(3;) Using the Weighted BT Model for
Standardized Data

PT yT3-J1 K1 aT3-J1 yPR
B 4813 1.887 ~3.337 2.245 0.000
se(B)) 5.404 4585 6.297 3.483 0.000

TABLE 14.11
Estimated Probabilities ﬂij Using Equation 14.9 of Misclassifying C; over C; Using Standardized Data
PT yT3-J1 K1 aT3-J1 yPR
PT 0.05 0.00 0.07 0.01
yT3-J1 0.95 0.01 0.59 0.13
K1 1.00 0.99 1.00 0.97
aT3-J1 0.93 0.41 0.00 0.10
yPR 0.99 0.87 0.03 0.90

from the observed values, in particular, negative values still emerge. These differences
occur in particular in the right corner of the matrix. Testing of differences between
different classes (Table 14.13) can again be carried out in a similar way, with again
significance occurring in all differences, due to the very large number of pixels.

14.4 Discussion

This chapter focuses on the BT model for summarizing the error matrix. The model is
applied to the error matrix, derived from a segmentation of an image using a hierarchical

TABLE 14.12
Observed and Expected Entries in the Error Matrix
PT yTI3-J1 K1 aT3-J1 yPR
PT 304 8772 3256 13716
(304) (117179) (22340)
yT3-J1 805 0 2836 3848
(804) ) (2780) (4005)
K1 140464 95 13645 3799
(10515) ) (9342) *
aT3-J1 50825 2997 827 2621
* (3057) (1208) *
yPR 23788 8082 60 21226
(14605) (7766) * *

Note: See Table 14.1; entries marked * indicate an estimate of a negative value.
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TABLE 14.13

Test of Significances in Differences between Two Classes Using Standardized Data

Bi-B ASE t-Ratio H,
PT yT3J1 —2.926 0.017 —~172.09 Reject
K1 —8.150 0.011 —756.06 Reject
aT3-J1 —5.224 0.019 —269.15 Reject
yPR —2.568 0.008 —304.09 Reject
yT3-J1 K1 0.358 0.016 21.94 Reject
aT3-]1 5.582 0.012 449.40 Reject
yPR —4.813 0.010 —485.93 Reject
K1 aT3J1 —1.887 0.016 —121.64 Reject
yPR 3.337 0.014 24436 Reject
aT3-J1 yPR —2.245 0.010 —232.07 Reject

segmentation algorithm. The image is classified on geological units. The k-statistic,
measuring the accuracy of the whole error matrix, considers the actual agreement and
chance agreement, but ignores asymmetry in the matrix. In addition, the conditional
k-statistic measures the accuracy of agreement within each category, but does not con-
sider the preference of one category over another category. These measures of accuracy
only consider the agreement of classified pixels and reference pixels. In this study we
extended these measures with those from the BT model to include chance agreement and
disagreement. The BT model in its original form studies preference of one category over
another. A pairwise comparison between classes gives additional parameters as com-
pared to other measures of accuracy. The model also yields expected against observed
values, estimated parameters, and probabilities of misclassification of one category over
another category.

Using the BT model, we can determine both the agreement within a category and
disagreement in relation to another category. Parameters computed from this model can
be tested for statistical significance. This analysis does not take into account the categories
with zero values in combination with other categories. A formal testing procedure can be
implemented, using ASEs. The class parameters B; provide a ranking of the categories.
The BT model shows that a class, which is easier to recognize, is less confused with other
classes.

At this stage it is difficult to say which of the two implemented BT models is most
useful and appropriate for application. It appears that on the one hand the standardized
model allows us to give an interpretation that is fairer and more stable in the long run, but
the sometimes highly erroneous estimates of misclassification are a major drawback for
application. The original, unstandardized BT model may be applicable for an error
matrix as demonstrated in this study, but a large part of the available information is
ignored. One reason is that the error matrix is typically different from the error matrix as
applied in Ref. [11].

Positional and thematic accuracy of the reference data is crucial for a successful
accuracy assessment. Often the positional and thematic errors in the reference data are
unknown or are not taken into account. Vagueness in the class definition and the spatial
extent of objects is not included in most accuracy assessments. To take into account
uncertainty in accuracy assessment, membership values or error index values could
be used.



Use of the Bradley—Terry Model to Assess Uncertainty in an Error Matrix 339

14.5 Conclusions

We conclude that the BT model can be used for a statistical analysis of an error matrix
obtained by a hierarchical classification of a remotely sensed image. This model relies on
the key assumption that misclassification of one class as another is one minus the
probability of misclassifying the other class as the first class. The model provides param-
eters and estimates for differences between classes. As such, it may serve as an extension
to the k-statistic. As this study has shown, more directed information is obtained, includ-
ing a statement whether these differences are significantly different from zero.
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15.1 Introduction

Remote sensing is the term used for observing the strength of electromagnetic radi-
ation that is radiated or reflected from various objects on the ground level with a
sensor installed in a space satellite or in an aircraft. The analysis of acquired data is an
effective means to survey vast areas periodically [1]. Land map classification is one of
the analyses. The land map classification classifies the surface of the Earth into
categories such as water area, forests, factories, or cities. In this study, we will discuss
an effective method for land map classification by using synthetic aperture radar
(SAR) and support vector machine (SVM). The sensor installed in the space satellite
includes an optical and a microwave sensor. SAR as an active-type microwave sensor
is used for land map classification in this study. A feature of SAR is that it is not
influenced by weather conditions [2-9]. As a classifier, SVM is adopted, which is
known as one of the most effective methods in pattern and texture classification;
texture patterns are composed of many pixels and are used as input features for
SVM [10-12]. Traditionally, the maximum likelihood method has been used as a
general classification technique for land map classification. However, the categories
to be classified might not achieve high accuracy because the method assumes normal
distribution of the data of each category. Finally, the effectiveness of our proposed
method is shown by simulations.
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15.2 Proposed Method

The outline of the proposed method is described here. At first, the target images from
SAR are divided into an area of 8x8 pixels for the calculation of texture features. The
texture features that serve as input data to the SVM are calculated using gray level co-
occurrence matrix (GLCM), Cj;, and gray level difference matrix (GLDM), Dy. The term
GLCM means the co-occurrence probability that neighbor pixels i and j become the same
gray level, and GLDM means the gray level difference of neighbor pixels whose distance
is k. The definitions of texture features based on GLCM and GLDM are as follows:

Energy (GLCM)

E— Z Cizj (15.1)
ij
Entropy (GLCM)
H=-) CijlogC; (15.2)
ij
Local homogeneity
=% S (15.3)
R RO S '
Inertia
1= Z(i — )Gy (15.4)
ij
Correlation
(0 — ) — m)
C= ; Tcij
wi= 1D Ci m=3i3 Gy
i j j i
D ST SICTANEED I AN Siet (155
i i i i
Variance

V=) (i~ m0Cy (15.6)
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Energy (GLDM)

E; = Z D? (15.8)
k
Entropy (GLDM)
Hy == Dylog{Dy} (15.9)
k
Mean
M=k Dy (15.10)
k
Difference variance
V=> {k-MyD; (15.11)
k

The next step is to select effective texture features as an input to SVM as there are too
many texture features to feed SVM [(7 GLCMs + 4 GLDMs) x 8 bands = totally 88 fea-
tures]. Kullback-Leibler distance is adopted as the selection method of features in this
study. The definition of Kullback-Leibler distance between two probability density func-
tions p(x) and g(x) is as follows:

_ P()
L= Jp(x) log e dx (15.12)

Using the above as the distance measure, the distance indicated in the selected features
between two categories can be compared, and the feature combinations whose distance is
large are selected as input to the SVM. However, it is difficult to calculate all combinations
of 88 features for computational costs. Therefore, in this study, each 5-feature combination
from 88 is tested for selection.

Then the selected features are fed to the SVM for classification. The SVM classifies the
data into two categories at a time. Therefore, in this study, input data are classified into
two sets, that is, a set of water and cultivation areas or a set of city and factory areas in the
first stage. In the second stage, these two sets are classified into two categories, respect-
ively. In this step, it is important to reduce the learning costs of SVM since the remote
sensing data from SAR are too large for learning. In this study, we propose a reduction
method of SVM learning costs using the extraction of surrounding part data based on the
distance in the kernel space because the boundary data of categories determine the SVM
learning efficiency. The distance d(x) of an element x in the kernel space from the category
to which the element belongs is defined as follows using the kernel function ®(x):

2
d?(x) =

()~ > ()
k=1

- (@(x) Y <I>(xk)> (@(x) Y ‘D(Xz)>
k=1 =1

= BPR) DB Bx) S PPN+ DD ) bx) (15.13)
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Here, x; denotes the elements of category, and # is the total number of elements.
Using the above distance d(x), the relative distance r1(x) and r,(x) can be defined as

(15.14)

d1(x) — da(x)

N (15.15)

ra(x) =

In these equations, d1(x) and d»(x) indicate the distance of the element x from the category
1 or 2, respectively. A half of the total data that has small relative distance is extracted and
fed to the SVM. To evaluate this extraction method by comparing with the traditional
method based on Mahalanobis distance, the simulation is performed using sample data 1
and 2 illustrated in Figure 15.1 through Figure 15.4, respectively. The distribution of
samples 1 and 2 is Gaussian. The centers of distributions are (—0.5,0), (0.5,0) in class 1
and 2 of sample 1, and (—0.6), (0.6) in class 1, and (0,0) in class 2 of sample 2, respectively.
The variances of distributions are 0.03 and 0.015, respectively. The total number of data is
500 per class. The kernel function used in this simulation is as follows:

A
K(xx) = D) Td(X) = exp<— %) (15.16)
202 =0.1

As a result of the simulation illustrated in Figure 15.2, Figure 15.3, Figure 15.5, and Figure
15.6, in the case of sample 1, both the proposed and the Mahalanobis-based method classify

© Class 1

Class 2
0.5 i
0r < ]
-05 4

_1 1 1 1
-1 -0.5 0 0.5 1
FIGURE 15.1

Sample data 1.
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FIGURE 15.2
Extracted boundary elements by proposed method (sample 1).
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FIGURE 15.3

Extracted boundary elements by Mahalanobis distance (sample 1).
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FIGURE 15.4
Sample data 2.
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FIGURE 15.5
Extracted boundary elements by proposed method (sample 2).
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FIGURE 15.6
Extracted boundary elements by Mahalanobis distance (sample 2).

data successfully. However, in the case of sample 2, the Mahalanobis-based method fails to
classify data though the proposed method succeeds. This is because Mahalanobis-based
method assumes that the data distribution is spheroidal. The distance function in those
methods illustrated in Figure 15.7 through Figure 15.10 clearly shows the reason for the
classification ability difference of those methods.

FIGURE 15.7
Distance d;(x) for class 1 in sample 2 (proposed method).
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FIGURE 15.8
Distance d(x) for class 2 in sample 2 (proposed method).

15.3 Simulation
15.3.1 Data Set and Condition for Simulations

The target data (Figure 15.11) used in this study for the classification are the observational
data by SIR-C. The SIR-C device is a SAR system that consists of two wavelengths: L-band
(wavelength 23 cm) and C-band (wavelength 6 cm) and four polarized electromagnetic
radiations. The observed region is Kagawa Prefecture, Sakaide City, Japan (October 3,

O=NWPLhUOION®©O©
T T T T T T T T

FIGURE 15.9
Distance d;(x) for class 2 in sample 2 (Mahalanobis).
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FIGURE 15.10
Distance d,(x) for class 2 in sample 2 (Mahalanobis).

1994). The image sizes are 1000 pixels in height, 696 pixels in width, and each pixel has
256 gray levels in eight bands.

To extract the texture features, the areas of 8 x8 pixels on the target data are combined
and classified into four categories “water area,” “’cultivation region,” “city region,” and
“factory region.” The mountain region is not classified because of the backscatter. The
ground-truth data for training are shown in Figure 15.12 and the numbers of sample data
in each category are shown in Table 15.1.

The selected texture features based on Kullback-Leibler distance mentioned in the
previous section are shown in Table 15.2.

The kernel function of SVM is Gaussian kernel with the variance o% = 0.5, and soft
margin parameter C is 1000. The SVM training data are 100 samples randomly selected
from ground-truth data for each category.

i

15.3.2 Simulation Results

The final result of simulation is shown in Table 15.3. In this table, ““selected”” implies the
classification accuracy with selected texture features in Table 15.2, and “all” implies
the accuracy with all 88 kinds of texture features. The final result shows the effectiveness
of feature selection for improving classification accuracy.

15.3.3 Reduction of SVM Learning Cost

The learning time of SVM depends on the number of sample data. Therefore, the com-
putational cost reduction method for SVM learning is important for complex data sets
such as “city’” and ““factory”’ region in this study. Then, the reduction method proposed in
the previous section is applied, and the effectiveness of this method is evaluated by
comparing the learning time with traditional methods. The numbers of data are from
200 to 4000, and the learning times of the SVM classifier are measured in two cases. In the
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FIGURE 15.11
Target data.

first case, all data are used for learning and in the second case, by using the proposed
method, data for learning are reduced by half. The selected texture features for classifi-
cation are the energy (band 1), the entropy (band 6), and the local homogeneity (band 2),
and the SVM kernel is Gaussian. Figure 15.13 shows the result of the simulation. The CPU
of the computer used in this simulation is Pentium 4/2GHz. The result of the simulation
clearly shows that the learning time is reduced by using the proposed method. The
learning time is reduced to about 50% on average.
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FIGURE 15.12 (See color insert following page 240.)
Ground-truth data for training.

TABLE 15.1
Number of Data

. Water
. City

{:l Cultivation

|:[ Factory

D Mountain

Category Number of Data
Water 133201
Cultivation 16413

City 11378
Factory 2685
TABLE 15.2

Selected Features.

Category

Texture Features

Water, cultivation/city, factory
Water/factory
City/factory

Correlation (1, 2), sum average (1)
Variance (1)
Energy (1), entropy (6),

local homogeneity (2)

Numbers in parentheses indicate SAR band
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TABLE 15.3

Classification Accuracy (%)

Water  Cultivation  City  Factory Average

Selected ~ 99.82 94.37 93.18 89.77 94.29
All 99.49 94.35 92.18 87.55 93.39
1600
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1000 Normal \b/ /
800

Accelerated /

T~
/./

200 400 600 800 1000 2000 3000 4000
Number of data

P2
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o O

Learning time (sec

N
o
o

o

FIGURE 15.13
SVM learning Time.

15.4 Conclusions

In this chapter, we have proposed the automatic selection of texture feature combinations
based on the Kullback-Leibler distance between category data distributions, and the
computational cost reduction method for SVM classifier learning. As a result of simula-
tions, by using our proposed texture feature selection method and the SVM classfier,
higher classification accuracy is achieved when compared with traditional methods. In
addition, it is shown that our proposed SVM learning method can be applied to more
complex distributions than applying traditional methods.
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16.1 Introduction

Information theoretic assessment is a branch of image analysis aimed at defining and
measuring the quality of digital images and is presently an open problem [1-3]. By
resorting to Shannon’s information theory [4], the concept of quality can be related to
the information conveyed to a user by an image or, in general, by multi-band data, that is,
to the mutual information between the unknown noise-free digitized signal (either radi-
ance or reflectance in the visible-near infrared (VNIR) and short-wave infrared (SWIR)
wavelengths, or irradiance in the middle infrared (MIR), thermal infrared (TIR), and far
infrared (FIR) bands) and the corresponding noise-affected observed digital samples.
Accurate estimates of the entropy of an image source can only be obtained provided the
data are uncorrelated. Hence, data decorrelation must be considered to suppress or
largely reduce the correlation existing in natural images. Indeed, entropy is a measure
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of statistical information, that is, of uncertainty of symbols emitted by a source. Hence,
any observation noise introduced by the imaging sensor results in an increment in
entropy, which is accompanied by a decrement of the information content useful in
application contexts.

Modeling and estimation of the noise must be preliminarily carried out [5] to quantify
its contribution to the entropy of the observed source. Modeling of information sources is
also important to assess the role played by the signal-to-noise ratio (SNR) in determining
the extent to which an increment in radiometric resolution can increase the amount of
information available to users.

The models that are exploited are simple, yet adequate, for describing first-order
statistics of memoryless information sources and autocorrelation functions of noise pro-
cesses, typically encountered in digitized raster data. The mathematical tractability of
models is fundamental for deriving an information theoretic closed-form solution yield-
ing the entropy of the noise-free signal from the entropy of the observed noisy signal and
the estimated noise model parameters.

This work focuses on measuring the quality of multi-band remotely sensed digitized
images. Lossless data compression is exploited to measure the information content of the
data. To this purpose, extremely advanced lossless compression methods capable of
attaining the ultimate compression ratio, regardless of any issues of computational
complexity [6,7], are utilized. In fact, the bit rate achieved by a reversible compression
process takes into account both the contribution of the “observation” noise (i.e., informa-
tion regarded as statistical uncertainty, whose relevance is null to a user) and the intrinsic
information of hypothetically noise-free samples.

Once the parametric model of the noise, assumed to be possibly non-Gaussian and
both spatially and spectrally autocorrelated, has been preliminarily estimated, the
mutual information between noise-free signal and recorded noisy signal is calculated
as the difference between the entropy of the noisy signal and the entropy derived from
the parametric model of the noise. Afterward, the amount of information that the
digitized samples would convey if they were ideally recorded without observation
noise is estimated. To this purpose, an entropy model of the source is defined. The
inversion of the model yields an estimate of the information content of the noise-free
source starting from the code rate and the noise model. Thus, it is possible to establish
the extent to which an increment in the radiometric resolution, or equivalently in the
SNR, obtained due to technological improvements of the imaging sensor can increase
the amount of information that is available to the users” applications. This objective
measurement of quality fits better the subjective concept of quality, that is, the cap-
ability of achieving a desired objective as the number of spectral bands increases.
Practically, (mutual) information, or equivalently SNR, is the sole quality index for
hyperspectral imagery, generally used for detection and identification of materials and
spectral anomalies, rather than for conventional multi-spectral classification tasks.

The remainder of this chapter is organized as follows. The information theoretic
fundamentals underlying the analysis procedure are reviewed in Section 16.2. Section
16.3 presents the information theoretic procedure step by step: noise model, estimation of
noise parameters, source decorrelation by differential pulse code modulation (DPCM),
and parametric entropy modeling of memoryless information sources via generalized
Gaussian densities. Section 16.4 reports experimental results on a hyperspectral image
acquired by the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) radiometer
and on a test superspectral image acquired by the Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) imaging radiometer. Concluding remarks are
drawn in Section 16.5.
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16.2 Information Theoretic Problem Statement

If we consider a discrete multi-dimensional signal as an information source S, its average
information content is given by its entropy H(S)[8]. An acquisition procedure originates
an observed digitized source S, whose information is the entropy H(S). H(S) is not
adequate for measuring the amount of acquired information, since the observed source
generally does not coincide with the digitized original source, mainly because of
the observation noise. Furthermore, the source is not exactly band-limited by half of the
sampling frequency; hence, the nonideal sampling is responsible for an additional
amount of noise generated by the aliasing phenomenon. Therefore, only a fraction of
the original source information is conveyed by the digitized noisy signal.

The amount of source information that is not contained in the digitized samples is
measured by the conditional entropy H(S|S) or equivocation, which is the residual
uncertainty on the original source when the observed source is known. The contribution
of the overall noise (i.e., aliasing and acquisition noise) to the entropy of the digitized
source is measured by the conditional entropy H(S|S), which represents the uncertainty
on the observed source S when the original source S is known. Therefore, the larger the
acquisition noise, the larger H(S), even if the amount of information of the original source
that is available from the observed (noisy) source is not increased, but diminished by the
presence of the noise. A suitable measure of the information content of a recorded source
is instead represented by the mutual information:

1(S;5) = H(S) — H(S|S)
= H(S) — H(S]S)
= H(S) + H(S) — H(S,95). (16.1)

Figure 16.1 describes the relationship existing between the entropy of the original and the
recorded source and mutual information and joint entropy H(S, S).

In the following sections, the procedure reported in Figure 16.2 for estimating the
mutual information I(S; S) and the entropy of the noise-free source H(S) is described
later. The estimation relies on parametric noise and source modeling that is also
capable of describing non-Gaussian sources usually encountered in a number of applica-
tion contexts.

FIGURE 16.1

Relationship between entropies H(S) and H(é), equivocation
H(SS), conditional entropy H(S|S), mutual information I(S; $),
and joint entropy H(S,S).




358 Image Processing for Remote Sensing

GG PDF PDF of Entropy of
Noisy residuals of noisy residuals Noise-free residuals noise-free
signal
Parametric | H(S
- G% PIPF —De convolution |—»| entropy L»
—» Decorrelation modetiing ™ estimation
Noisy Er_\trop_y of
Signal noisy sA|gnaI
H(S)
Noise GG PFD of
histogram decorrglated Mutual
| noise information
Noise | *| GG PDF I 1(5;85)
estimation | __,| modelling ot _
Noise -
Noise parameters entropy
(0.p) H(s|8)
FIGURE 16.2

Flowchart of the information theoretic assessment procedure for a digital signal.

16.3 Information Assessment Procedure
16.3.1 Noise Modeling

This section focuses on modeling the noise affecting digitized observed signal samples.
Unlike coherent or systematic disturbances, which may occur in some kind of data, the
noise is assumed to be due to a fully stochastic process. Let us assume an additive signal-
independent non-Gaussian model for the noise

8(@) = f(i) + n(i) (16.2)

in which g(i) is the recorded noisy signal level and £(i) the noise-free signal at position (i).
Both g(i) and f(i) are regarded as nonstationary non-Gaussian autocorrelated stochastic
processes. The term n(i) is a zero-mean process, independent of f, stationary and auto-
correlated. Let its variance o2 and its correlation coefficient (CC) p be constant.

Let us assume for the stationary zero-mean noise a first-order Markov model, uniquely
defined by the p and the o

n(i) = p-n(i — 1) + &,(i) (16.3)
in which g,(i) is an uncorrelated random process having variance

ot =d2-(1-p?) (16.4)

The variance of Equation 16.2 can be easily calculated as
ao(i) = a7 (i) + o) (16.5)

due to the independence between signal and noise components and to the spatial statio-
narity of the latter. From Equation 16.3, it stems that the autocorrelation, R,,,(m), of n(i) is
an exponentially decaying function of the correlation coefficient p:
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Ryu(m) A E[n(iyn(i + m)] = pl"lo? (16.6)

The zero-mean additive signal-independent correlated noise model (Equation 16.3) is
relatively simple and mathematically tractable. Its accuracy has been validated for two-
dimensional (2D) and three-dimensional (3D) signals produced by incoherent systems [3]
by measuring the exponential decay of the autocorrelation function in Equation 16.6.

The noise samples n(i) may be estimated on homogeneous signal segments, in which f{(i)
is constant, by taking the difference between g(i) and its average g(i) on a sliding window
of length 2m + 1.

Once the CC of the noise, p, and the most homogeneous image pixels have been found
by means of robust bivariate regression procedures [3], as described in the next section,
the noise samples are estimated in the following way. If Equation 16.3 and Equation 16.6
are utilized to calculate the correlation of the noise affecting ¢ and g on a homogeneous
window, the estimated noise sample at the ith position is written as

(i) = Gl g - g0 (167)
@m+1)— (1+2p 1_Pp)

The resulting set {#1(i)} is made available to find the noise probability density function
(PDEF), either empirical (histogram) or parametric, via proper modeling.

16.3.2 Estimation of Noise Variance and Correlation

To properly describe the estimation procedure, a 2D notation is adopted in this section,
thatis, (i, j) identifies the spatial position of the indexed entities. The standard deviation of
the noisy observed band g(i, j) is stated in homogeneous areas as

ao(irj) = oo (16.8)

Therefore, Equation 16.8 yields an estimate of ¢, namely &,, as the y-intercept of the
horizontal regression line drawn on the scatterplot of 6, versus fi,, in which the symbol "
denotes estimated values, and is calculated only on pixels belonging to homogeneous
areas. Although methods based on scatterplots have been devised more than one decade
ago for speckle noise assessment [9], the crucial point is the reliable identification of
homogeneous areas. To overcome the drawback of a user-supervised method, an auto-
matic procedure was developed [10] on the basis of the fact that each homogeneous area
originates a cluster of scatterpoints. All these clusters are aligned along a horizontal
straight line having the y-intercept equal to o,. Instead, the presence of signal edges
and textures originates scatterpoints spread throughout the plot.

The scatterplot relative to the whole band may be regarded as the joint PDF of the
estimated local standard deviation to the estimated local mean. In the absence of any signal
textures, the image is made up by uniform noisy patches; by assuming that the noise is
stationary, the PDF is given by the superposition of as many unimodal distributions as the
patches. Because the noise is independent of the signal, the measured variance does not
depend on the underlying mean. Thus, all the above expectations are aligned along a
horizontal line.

The presence of textured areas modifies the “flaps” of the PDF, which still exhibit
aligned modes, or possibly a watershed. The idea is to threshold the PDF to identify a
number of points belonging to the most homogeneous image areas, large enough to yield
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a statistically consistent estimate and small enough to avoid comprising signal textures
that, even if weak, might introduce a bias by excess.

Now let us calculate the space-varying (auto)covariance of unity lag along either of the
coordinate directions, say i and j,

Cq(i, i1, 0) A E{[g(i, j) — E(g(i, D] - [8(G + 1, /) — E@( + 1, )1} = Cr(i, ji1, 0) + py. - o,
(16.9)

The term C(i, j;1, 0) on right-hand side of Equation 16.9 is identically zero in homoge-
neous areas in which o, (i, j) becomes equal to o,. Thus, Equation 16.9 becomes

Coli, i1, 0) = py - 03 = py - 0g(i, ) - 0 + 1, ) (16.10)

Hence, p,, and analogously p,, is estimated from those points, lying on the covariance-to-
variance scatterplots, corresponding to homogeneous areas.
To avoid calculating the PDF, the following procedure was devised:

e Within a (2m + 1) x (2m + 1) window, sliding over the image, calculate the local
statistics of the noisy image to estimate its space-varying ensemble statistics:

—average g(i, j) = fig(i, )

g(i,j)— 5 Z Zgz—i—k j+D (16.11)
m+ 1) k=—m l=—m

— RMS deviation from the average, 6,(i, j), with

A PR PR 2
670, j) = an +1> kgm l;n[g<z+k1+l 8, )] (16.12)

— cross deviation from the average Cg(i, j; 1, 0), given by

RN _ _
Cg(z,],l,O)—(2m+1) 1k;ll;1[g(z+k]+l) S, NI x[gGi+k+1,j+1) -3 +1,j)]

(16.13)

* Draw scatterplots either of 6,(i, j) versus fig(i, j) to estimate o, or of Cg(i, 7;1,0)
versus (i, j) - G4(i + 1, j) to estimate p,.

o Partition the scatterplot planes into an L x L array of rectangular blocks.

e Sort and label such blocks by decreasing population, that is, the number of
scatter pomts if C(-) denotes the cardinality of a set, then C(B®) > cB* + 1),
k=1,..,1%

e For each scatterplot, calculate a succession of horlzontal regression lines, that is
{6,4(k)}, from the set of scatter points {p |p € [J/_1 B®}.

The succession attains a steady value of the parameter after a number of terms that
depend on the actual percentage of homogeneous points. The size of the partition and
the stop criterion are noncrucial; however, a 100 x 100 array of blocks and the
stop criterion is applied after processing 2-10% of points, depending on the degree of
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heterogeneity of the scene, are usually setup. The size of the processing window, that is,
(2m + 1) x (2m + 1), is noncrucial if the noise is white. Otherwise, a size 7 x 7to 11 x 11 is
recommended, because too small a size will underestimate the covariance.

It is noteworthy that, unlike most of the methods that rely on the assumption of
white noise, the scatterplot method, which is easily adjustable to deal with signal-
dependent noise, can also accurately measure correlated noise, and is thus preferred
in this context.

To show an example of the estimation procedure, Figure 16.3a portrays band 25
extracted from the sequence acquired on the Cuprite Mine test site in 1997 by the AVIRIS
instrument. On this image, homogeneous areas that contribute to the estimation pro-
cedure have been automatically extracted (Figure 16.3b). The scatterplot of local stand-
ard deviation to local mean is plotted in Figure 16.3c. Homogeneous areas cluster
and determine the regression line whose y-intercept is the estimated standard deviation
of noise. Eventually, the scatterplot of local one-lag covariance to local variance is
reported in Figure 16.3d; the slope of the regression line represents the estimated
correlation coefficient.
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FIGURE 16.3

Estimation of noise parameters: (a) AVIRIS band 25 extracted from the sequence of Cuprite Mine test site
acquired in 1997; (b) map of homogeneous areas that contribute to the estimation; (c) scatterplot of local standard
deviation to local mean; the y-intercept of the regression line is the estimated standard deviation of noise; (d)
scatterplot of local one-lag covariance to local variance; the slope of the regression line is the estimated
correlation coefficient.



362 Image Processing for Remote Sensing

16.3.3 Source Decorrelation via DPCM

Differential pulse code modulation is usually employed for reversible data compression.
DPCM basically consists of a prediction stage followed by entropy coding of the resulting
prediction errors. For the sake of clarity, we develop the analysis for a 1D fixed DPCM and
extend its results to the case of 2D and 3D adaptive prediction [6,7,11,12].

Let g(i) denote the prediction at pixel i obtained as a linear regression of the values of P
previous pixels

P
20 =>_"¢()-gli—)) (16.14)
=1
in which {¢(j), j = 1,..., P} are the coefficients of the linear predictor and constant

throughout the image.
By replacing the additive noise model, one obtains

. P
§0) =f@) + > () - n(i - j) (16.15)
j=1
in which
R P
F@) =>¢G)-fi—)) (16.16)
j=1

represents the prediction for the noise-free signal expressed from its previous samples.
Prediction errors of g are

P
eg(i) = g(0) — §(1) = ef(i) + () = >_ () - (i — ) (16.17)
=1

in which e (i) A£G — f (i) is the error the predictor would produce starting from noise-free

data. Both e.(i) and ef(i) are zero-mean processes, uncorrelated, and nonstationary. The

zero-mean property stems from an assumption of local first-order stationarity, within

the (P + 1)-pixel window comprising the current pixel and its prediction support.
Equation 16.17 is written as

eq(i) = ef(i) + en(i) (16.18)
in which
A P
en(i) = n(i) — (i) = n(@) = $() - nli - j) (16.19)
j=1

is the error produced when the correlated noise is predicted. The term e, (i) is assumed to
be zero mean, stationary, and independent of (i), because f and n are assumed to be
independent of each other. Thus, the relationship among the variances of the three types
of prediction errors becomes



Quality Assessment of Remote-Sensing Multi-Band Optical Images 363

op (i) = o2.(i) + o, (16.20)

From the n01se model in Equation 16 3, 1t is easﬂy noticed that the term o, is lower
bounded by (rg , which means that a'e > o2 (1—p?).The optimum MMSE predlctor for a
f1rst—order Markov model, hke in Equatlon 16.3, is q’)(l) =pand ¢(j) =0,j =2,...,P;it
yields O'e =02-(1-p%) = 08 .» which can easily be verified. Thus, the residual variance
of the noise after decorrelation may be approximated from the estimated variance of the
correlated noise, that is, 62, and from its estimated CC, p, as

2 26 (1—p7) (16.21)

The approximation is more accurate as the predictor attains the optimal MMSE
performance.

16.3.4 Entropy Modeling

Given a stationary memoryless source S, uniquely defined by its PDF, p(x), having zero
mean and variance o2, linearly quantized with a step size A, the minimum bit rate needed
to encode one of its symbols is [13]

R = h(S) —log, A (16.22)

in which h(S) is the differential entropy of S defined as

h(S) = — ro p(x) log, p(x) dx = % log,(c - 0®) (16.23)

—00

where 0 < ¢ < 2me is a positive constant accounting for the shape of the PDF and attaining
its maximum for a Gaussian function. Such a constant is referred in the following as the
entropy factor. The approximation in Equation 16.22 holds for o > A, but is still acceptable
for o > A [14].

Now, the minimum average bit rate R, necessary to reversibly encode an integer-
valued sample of g, approximated as in Equatlon 16.22, in which prediction errors
are regarded as an uncorrelated source G = {e,(i)} and are linearly quantized with a
step size A = 1

4

R = h(G) = % log,(cg - 07) (16.24)

in which J@ is the average variance of e.(i). By averaging Equation 16.20 and replacing it in
Equation 16. 24, R, may be written as

1
Ry =5 log, [cg (a5, + o) (16.25)
where 56]_2 is the average variance of aefz(i). If U(,f = 0, then Equation 16.25 reduces to

1
Ry = Ry =5 logy(cn - o) (16.26)
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in which ¢, = 2me is the entropy factor of the PDF of e, if n is Gaussian. Analogously, if
0. = 0, then Equation 16.25 becomes

1
Ry =Ry =2 log,(cs - &ff) (16.27)

in which ¢f < 2me is the entropy factor of prediction errors of the noise-free image, which
are generally non-Gaussian.

The average entropy of the noise-free signal f in the case of correlated noise is given by
replacing Equation 16.20 and Equation 16.21 in Equation 16.27 to yield

Ry = 1 logyley 102, — (1~ ) -2 (16.28)

Since Ue can be measured during compression process by averaging cr,2 , ¢ris the only
unknown parameter whose estimation is crucial for the accuracy of Ry. The determination
of ¢f can be performed by modeling the PDF of ¢f through the PDF of e, and e,. The
generalized Gaussian density (GGD) model, which can properly represent these PDFs, is
described in the next section.

16.3.5 Generalized Gaussian PDF

A model suitable for describing unimodal non-Gaussian amplitude distributions is
achieved by varying the parameters v (shape factor) and o (standard deviation) of the
GGD [15], which is defined as

pc) = |5 1 expl ~ 1, 0)- 1) (1629)
where
1 [TEm?
n(v, o) = p [F(l/v)] (16.30)

and I'(-) is the well-known Gamma function, that is, I'(z) = [¢°#* e~ tdt, z > 0. Since
I'(n) = (n — 1)!, when v = 1, a Laplacian law is obtained; but, v = 2 yields a Gaussian
distribution. As limit cases, for v — 0, pgg(x) becomes an impulse function, yet has
extremely heavy tails and thus a nonzero o variance, whereas for v — oo, pcc(x)
approaches a uniform distribution having variance o* as well. The shape parameter v
rules the exponential rate of decay: the larger the v, the flatter the PDF; the smaller the v,
the more peaked the PDF. Figure 16.4a shows the trend of the GG function for different
values of ».

The matching between a GGD and the empirical data distribution can be obtained
following a maximum likelihood (ML) approach [16]. Such an approach has the disad-
vantage of a cumbersome numerical solution. Some effective methods, which are suitable
for real-time applications, have been developed. They are based on fitting a parametric
function (shape function) of the modeled source to statistics calculated from the observed
data [17-19]. In Figure 16.4b, the kurtosis [19], Mallat’s [20] and entropy matching [18]
shape functions are plotted as a function of the shape factor » for a unity variance GG. In
the experiments carried out in this work, the method briefly introduced by Mallat [20] and
then developed in greater detail by Sharifi and Leon-Garcia [17] has been adopted.
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FIGURE 16.4
(@) Unity-variance GG density plotted for several »’s; (b) shape functions of a unity-variance GG PDF as a
function of the shape factor v.

16.3.6 Information Theoretic Assessment

Let us assume that the real-valued ey(i) may be modeled as a GGD. From Equation 16.24,
the entropy function is

1
5 log,(cg) = Ry — log,(ae,) = Fu(ve,) (16.31)

in which v, _is the shape factor of ¢(i), the average rate of which, R, has been set equal to
the entropy H of the discrete source. The v, is found by inverting either the entropy
function Fy(v,) or any other shape function; in that case, the ey (i) produced by DPCM,
instead of its variance, is directly used. Eventually, the parametric PDF of the uncorrel-
ated observed source e(i) is available.

The term e,(i) is obtained by addmg a sample of white non-Gaussian noise of variance
o>, approximately equal to (1 — p?) - o7, to a sample of the noise-free uncorrelated non-
Gaussian signal es(i). Furthermore, ¢ (i) and e,(i) are independent of each other.

Therefore, the GG PDF of ¢, previously found i is given by the linear convolution of the
unknown p, (x) with a GG PDF having variance o> and shape factor v, . By assuming that
the PDF of the noise-free residues, p,(x), is GG as well, its shape factor v, can be obtained
starting from the forward relationship

PGG[@W Veg](x) = pcal 6'33, - 0'3"/ Vef](x) ® pcaloe,, ve,1(x) (16.32)

by deconvolving the PDF of noise residue from that of noisy signal residue.

In a practical implementation, the estimated value of v,, is found such that the direct
convolution at the right-hand side of Equation 16.32 yields a GGD, whose shape factor
matches v, as much as possible.

Eventually, the estimated shape factor 7, is used to determine the entropy function

1
5 108, (¢f) = Fra(i) (16.33)
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which is replaced in Equation 16.28 to yield the entropy of the noise-free signal Ry =
H(S). Figure 16.2 summarizes the overall procedure. The mutual information is simply
given as the difference between the rate of the decorrelated source and the rate of
the noise.

The extension of the procedure to 2D and 3D signals, that is, to digital images and
sequences of digital images, is straightforward. In the former case, 2D prediction is used
to find e,, and two correlation coefficients, p, and p,, are to be estimated for the noise,
since its variance after decorrelation is approximated as (1 — p3)(1 — pi), by assuming a
separable 2D Markov model. Analogously, Equation 16.7 that defines the estimated value
of a sample of correlated noise is extended as

L N2 SN e
(i, j) = — o 180 ) — 86, )] (16.34)
(N* - (1 2 11;1) (1 +2py 1—;)

in which N = 2m + 1 is the length of the side of the square window on which the average
2(i, j) is calculated.

The 3D extension is more critical because a sequence of images may have noise
variances and spatial CCs different for each image. Moreover, it is often desirable to
estimate entropy and mutual information of the individual images of the sequence.
Therefore, each image is decorrelated both spatially and along the third dimension by
using a 3D prediction.

16.4 Experimental Results

The results presented in this section refer to AVIRIS and ASTER sensors. Such sensors can
be considered as representatives of hyperspectral and superspectral instruments, respect-
ively. Apart from specific design characteristics (e.g., only ASTER has TIR channels), their
main difference for users consists in the spectral resolution that is particularly high (10
nm) for AVIRIS, thus yielding the acquisition of a consistent number of spectral bands
(224). An obvious question would be to assess to what extent such a high spectral
resolution and large number of bands may correspond to an increase in information
content. Although it is not possible to answer this and it would require the definition of
an ideal experiment in which the same scene would be acquired with two ideal sensors
differing in spectral resolution only, some careful consideration is, however, possible by
referring to the mutual information measured for the two sensors.

16.4.1 AVIRIS Hyperspectral Data

Hyperspectral imaging sensors provide a thorough description of a scene in a quasicon-
tinuous range of wavelengths [21]. A huge amount of data is produced for each scene:
problems may arise for transmission, storage, and processing. In several applications, the
whole set of data is redundant and therefore it is difficult to seek the intrinsically
embedded information [22]. Hence, a representation of the data that allows essential
information to be condensed in a few basic components is desirable to expedite scene
analysis [23]. The challenging task of hypervariate data analysis may be alleviated by
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resorting to information theoretic methods capable of quantifying the information content
of the data that are likely to be useful in application contexts [3,24].

The proposed information theoretic procedure was run on a hyperspectral image
having 224 spectral bands. The image was acquired in 1997 by the AVIRIS operated by
NASA/JPL on the Cuprite Mine test site in Nevada.

AVIRIS sequences are constituted by 224 bands recorded at different wavelengths in
the range 380-2500 nm, with a spectral separation between two bands of 10 nm nomin-
ally. The sensor acquires images pixel by pixel (whisk-broom), recording the spectrum of
each pixel. The size of an image is 614 pixels in the across-track direction, while the size in
the along-track direction is variable and limited only by the onboard mass storage
capacity. The instantaneous field of view (IFOV) is about 1 mrad, which means that, at
the operating height of 20 km, the spatial resolution is about 20 m. The sequence was
acquired by the sensor with the 12-bit analog-to-digital converter (ADC) introduced in
1995 in substitution of the 10-bit ADC originally designed in 1987. All the data are
radiometrically calibrated and expressed as radiance values (i.e., power per surface,
solid angle, and wavelength units). The AVIRIS system features four distinct spectro-
meters capable of operating in the visible (VIS) (380-720 nm), NIR (730-1100 nm), and in
the first and second part of the SWIR interval (1110-2500). The three transition regions of
the spectrum are covered by two adjacent spectrometers, whose bands are partially
overlapped.

The Cuprite Mine image for which results are reported is the fourth 614 x 512 portion of
the full image composed of four consecutive 614 x 512 frames. A sample of six bands,
four acquired in the blue, green, red, and NIR wavelengths, two in the SWIR wavelengths,
is shown in Figure 16.5.

The first step of the procedure concerns noise estimation of all 224 bands. Across-track
and along-track CCs of the noise, that is, p, and p,, are plotted against band number in

(a) (b) (©)
(d) (e) U]

FIGURE 16.5

Sample bands from Cuprite Mine AVIRIS hyperspectral image (128 x 128, detail): (a) blue wavelength (band 8);
(b) green (band 13); (c) red (band 23); (d) near infrared (band 43); (e) lower short-wave infrared (band 137); (f)
upper short-wave infrared (band 181).
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FIGURE 16.6

Noise parameters of test AVIRIS hyperspectral image plotted against band number: (a) CC across track, p; (b)
CC along track, p,; (c) CC along spectral direction, p,; (d) square root of noise variance, o,,; () shape factor of GG-
modeled noise PDF, v, (average 2.074); (f) SNR.

Figure 16.6a and Figure 16.6b, respectively. The CCs exhibit similar values (averages of
0.403 versus 0.404), showing that the data have been properly preprocessed to eliminate
any striping effect possibly caused by the scanning mechanism that produces the images
line by line following the motion of the airborne platform (track). Apart from the transi-
tion between the first and the second spectrometers, marked losses of correlation are
noticed around changes between the other spectrometers. The spectral CC of the noise
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(Figure 16.6c) seems rather singular: apart from the absorption bands, all the spectro-
meters exhibit extremely high values (average of 0.798), probably originated by prepro-
cessing along the spectral direction aimed at mitigating structured noise patterns
occurring in the raw data [3]. The measured standard deviation of correlated noise is
drawn in Figure 16.6d; the noise follows the typical spectral distribution provided by JPL
as NER [14]; the average value of its standard deviation is 32.86. Figure 16.6e shows that
the noise of AVIRIS data is Gaussian with good approximation (average shape factor
2.074), as assumed in earlier works [25,3], with the noise shape factor rather stable around
2. Eventually, Figure 16.6f demonstrates that the SNR is almost uniform, varying with the
wavelength, apart from the absorption bands, and close to values greater than 35 dB
(average of 33.03 dB). This feature is essential for the analysis of spectral pixels, for which
a uniform SNR is desirable.

Once all noise parameters had been estimated, the information theoretic assessment
procedure was run on the AVIRIS data set. Figure 16.7 reports plots of information
parameters varying with band number (not exactly corresponding to wavelength because
every couple of adjacent spectrometers yields duplicate bands at the same wavelengths).
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Information parameters of test AVIRIS hyperspectral image plotted against band number: (a) code rate of noisy
radiance, Ry, approximating H(ﬁ); (b) noise entropy, R,, corresponding to H(é |S); (c) mutual information, 1(S;9),
given by R, — R, (average 0.249); (d) entropy of noise-free radiance, H(S), given by Ry obtained by inverting the
parametric source entropy model.
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The entropy of noisy radiance was approximated by the code bit rates provided by the
RLP 3D encoder [12], working in reversible mode, that is, without quantization (roundoff
to integer only) of prediction residues. The entropy of the estimated noise (R,,), plotted in
Figure 16.7b, follows a trend similar to that of bit rate (Ry) in Figure 16.7a, which also
reflects the trend of noise variance (Figure 16.6d) with the only exception of the first
spectrometer. R, has an average value of 4.896 bit per radiance sample, R,, of 4.647. The
mutual information, given by the difference of the two former plots and drawn in
Figure 16.7c, reveals that the noisiness of the instrument has destroyed most of noise-
free radiance information. Only an average of 0.249 bit survived. Conversely, the radiance
information varying with band number would approximately be equal to that shown in
Figure 16.7d (about 3.57 bits, in average) if the recording process were ideally noise-free.
According to the assumed distortion model of spectral radiance, its entropy must be zero
whenever the mutual information is zero as well. This condition occurs only in the
absorption bands, where SNR is low, thereby validating the implicit relationship between
SNR and information.

16.4.2 ASTER Superspectral Data

Considerations on the huge amount of produced data and the opportunity to characterize
the basic components in which information is condensed also apply for superspectral
sensors like ASTER [26]. In fact, the number of spectral bands is moderate, but the
swath width is far wider than that of hyperspectral sensors and therefore the data volume
is still huge.

The proposed information theoretic procedure was run on the ASTER superspectral
image acquired on the area of Mt. Fuji and made available by Earth Remote Sensing Data
Analysis Center (ERSDAC) of Ministry of Economy, Trade, and Industry of Japan (METI).
L1B data, that is, georeferenced and radiometrically corrected, were analyzed. ASTER
collected data in 14 channels of VNIR, SWIR, and TIR spectral range. Images had different
spatial, spectral, and radiometric resolutions. The main characteristics of the ASTER data
are reported in Table 16.1. Figure 16.8 shows details of the full size test image. Three out of
the 14 ASTER bands are reported as representative of VNIR, SWIR, and TIR spectral
intervals. The relative original spatial scale has been maintained between images, while
contrast has been enhanced to improve visual appearance.

The first step of the procedure concerns noise estimation of all 14 bands. Across-track
and along-track CCs of the noise, that is, p, and p,, are plotted against band number in
Figure 16.9a and Figure 16.9b, respectively. In the former, the correlation of noise is lower
in VNIR and SWIR bands than in TIR ones, whereas in the latter this behavior is opposite.
This can easily be explained since VNIR and SWIR sensors are push-broom imagers that

TABLE 16.1
Spectral, Spatial, and Radiometric Resolution of ASTER Data

VNIR (15 m-8 bit/sample) (pm) SWIR (30 m-8 bit/sample) (um) TIR (90 m-12 bit/sample) (pm)

Band 1: 0.52-0.60
Band 2: 0.63-0.69
Band 3: 0.76-0.86

Band 4: 1.600-1.700
Band 5: 2.145-2.185
Band 6: 2.185-2.225
Band 7: 2.235-2.285
Band 8: 2.295-2.365
Band 9: 2.360-2.430

Band 10: 8.125-8.475
Band 11: 8.475-8.825
Band 12: 8.925-9.275
Band 13: 10.25-10.95
Band 14: 10.95-11.65
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(a)

FIGURE 16.8
Detail of ASTER superspectral test image: (a) VNIR band 2, resolution 15 m; (b) SWIR band 6, resolution 30 m;
(c) TIR band 12, resolution 90 m.

acquire data along-track, whereas the TIR sensor is a whisk-broom device that scans the
image across-track. Therefore, in VNIR and SWIR bands, the same sensor element pro-
duces a line in the along-track direction and the noise CC results higher along that
direction. The spectral CC of the noise is reported in Figure 16.9c. The CC values are
rather low, in contrast to hyperspectral sensors where preprocessing along the spectral
direction, aimed at mitigating structured noise patterns occurring in the raw data [3], can
introduce significant correlation among bands. The CC values of bands 1, 4, and 10 in
Figure 16.9c have been arbitrarily set equal to 0, because a previous reference band is not
available for the measurement.

The measured standard deviation of correlated noise is drawn in Figure 16.9d where
two curves are plotted to take into account that the ADC of the TIR sensor has 12 bits,
while the ADCs of the VNIR and SWIR sensors have 8 bits. The solid line refers to the
acquired data and suggests that the VNIR and SWIR data are less noisy than those of TIR.
The dashed line has been obtained by rescaling the 8-bit VNIR and SWIR data to the 12-bit
dynamic range of TIR sensor; it represents a likely indicator of the noisiness of the VNIR
and SWIR data if they were acquired with a 12-bit ADC. Therefore, it is evident that TIR
data are less noisy than the others, as shown in the SNR plot reported in Figure 16.9f. In
fact, the SNR values of TIR bands are higher than in the other bands because of the 12-bit
dynamic range of the sensor and the low value of the standard deviation of the noise,
once the data have been properly rescaled. As a further consideration, Figure 16.9d and
Figure 16.9f evidence that the standard deviation of the noise of ASTER data in all bands
is rather low and, conversely, the SNR is somewhat high when compared to other satellite
imaging sensors.
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Eventually, Figure 16.9e plots the noise shape factor. Conversely, from AVIRIS, the
noise shape factor is rather different from 2, thereby suggesting that the noise might be
non-Gaussian. This apparent discrepancy is due to an inaccuracy in the estimation
procedure and probably occurs because the noise level in VNIR and SWIR bands is low
(in the 8-bit scale) and hardly separable from weak textures.



Quality Assessment of Remote-Sensing Multi-Band Optical Images 373

Once all noise parameters had been estimated, the information theoretic assessment
procedure was run on the ASTER data set. The entropy of observed images was again
approximated by the code bit rates provided by the RLP 3D encoder [12], working in
reversible mode. Owing to the different spatial scales of ASTER images in VNIR, SWIR,
and TIR spectral range, each data set has been processed separately. Therefore, the 3D
prediction has been carried out for each spectrometer. As a consequence, the decorrela-
tion of the first image of each data set cannot exploit the correlation with the spectrally
preceding band. Thus, the code rate R, and consequently R, and Ry, is inflated for bands
1, 4, 10 (some tenths of bit for bands 1, 4, and roughly 1 bit for band 10).

Figure 16.10 reports plots of information parameters varying with band numbers.
Entropies are higher for TIR bands than for the others because of the 12-bit ADC. The
bit rate R, is reported in Figure 16.10a. The inflation effect is apparent for band 10 and
hardly recognizable for bands 1 and 4. The high value of R, for band 3 is due to the
response of vegetation that introduces a strong variability in the observed scene and
makes band 3 strongly uncorrelated with the other VNIR bands. Such variability repre-
sents an increase in information that is identified and measured by the entropy values.
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Information parameters of test ASTER superspectral image plotted against band number: (a) code rate of
obsgrved data, R,, approximating H(é); (b) noise entropy, R, corresponding to H(é |S); (c) mutual information,
I(5,5), given by R, — R,; (d) entropy of noise-free data, H(S), given by Ry obtained by inverting the parametric
source entropy model.
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The entropy of the estimated noise, plotted in Figure 16.10b, follows a trend similar to
that of bit rate in Figure 16.10a, with a noticeable difference in band 3 (NIR), where the
information presents a peak value, as already noticed.

The mutual information, I(S; .§), given by the difference of the two former plots and
drawn in Figure 16.10c has retained a significant part of noise-free radiance information.
In fact, the radiance information varying with the band number is consistent with that
shown in Figure 16.10d. This happens because the recording process is weakly affected by
the noise. According to the assumed model, when the noise level is low and does not
affect the observation significantly, the entropy of the noise-free source must show the
same trend of the mutual information and the entropy of the observed data.

16.5 Conclusions

A procedure for information theoretic assessment of multi-dimensional remote-sensing
data has been described. It relies on robust noise parameters estimation and advanced
lossless compression to calculate the mutual information between the noise-free band-
limited analog signal and the acquired digitized signal. Also, because of the parametric
entropy modeling of information sources, it is possible to upper bound the amount of
information generated by an ideally noise-free process of sampling and digitization. The
results on image sequences acquired by AVIRIS and ASTER imaging sensors offer an
estimation of the true and hypothetical information contents of each spectral band. In
particular, for a single spectral band, mutual information of ASTER data results higher
than that of AVIRIS. This is not surprising and is due to the nature of hyperspectral data that
are strongly correlated and thus well predictable, apart from the noise. Therefore, a hyper-
spectral band usually exhibits mutual information lower than that of a superspectral band.
Nevertheless, the sum of the mutual information of the hyperspectral bands on a given
spectral interval should be higher than the mutual information of only one band covering
the same spectral interval. Interesting considerations should stem from future work de-
voted to the analysis of data of a same scene acquired at the same time by different sensors.
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FIGURE 1.1
An L-band, VV-pol, AIRSAR image, of northern California coastal waters (Gualala River dataset), showing ocean
waves propagating through a study-site box.



Dominant i
Wave: 157 m

¢~ Wave Direction
306°

FIGURE 1.4
Orientation angle spectra versus wave number for azimuth direction waves propagating through the study site.

The white rings correspond to 50m, 100m, 150m, and 200 m. The dominant wave, of wavelength 157 m, is
propagating at a heading of 306°.
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Small perturbation model dependence of alpha on the incidence angle. The red curve is for a dielectric constant
representative of sea water (80-70j) and the blue curve is for a perfectly conducting surface.
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FIGURE 1.7
Derivative of alpha with respect to the incidence angle. The red curve is for a sea water dielectric and the blue
curve is for a perfectly conducting surface.
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FIGURE 1.9
Spectrum of waves in the range direction using the alpha parameter from the Cloude—Pottier decomposition
method. Wave direction is 306° and dominant wavelength is 162 m.
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FIGURE 1.19
(a and b) (a) Variations in anisotropy at low wind speeds for a filament of colder, trapped water along the

northern California coast. The roughness changes are not seen in the conventional VV-pol image, but are clearly
visible in (b) an anisotropy image. The data is from coastal waters near the Mendocino Co. town of Gualala.
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FIGURE 1.20
(a) Image of anisotropy values. The quantity, 1-A, is proportional to small-scale surface roughness and (b) a
conventional L-band VV-pol image of the study area.
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FIGURE 1.21
Alpha-entropy scatter plot for the image study area. The plot is divided into eight color-coded scattering classes
for the Cloude-Pottier decomposition described in Ref. [6].
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FIGURE 1.22
Classification of the slick-field image into H/a scattering classes.
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FIGURE 1.23

(a) L-band, HH-pol image of a second study image (CM6744) containing two strong spiral eddies marked by
natural biogenic slicks and (b) classification of the slicks marking the spiral eddies. The image features were
classified into eight classes using the H-& values combined with the Wishart classifier.
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FIGURE 1.24

Classification of the slick-field image into H/A /& 14 scattering classes. The Classes 1-7 correspond to anisotropy
A values 0.5 to 1.0 and the classes 8-14 correspond to anisotropy A values 0.0 to 0.49. The two lighter blue
vertical features at the lower right of the image appear in all images involving anisotropy and are thought to be
smooth slicks of lower concentration.



(a) DC Mall data (b) Training map (c) Test map
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FIGURE 10.1
False color image of the DC Mall data set (generated using the bands 63, 52, and 36) and the corresponding
ground-truth maps for training and testing. The number of pixels for each class are shown in parenthesis in the

legend.



(b) Training map

(a) Centre data
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FIGURE 10.2

False color image of the Centre data set (generated using the bands 68, 30, and 2) and the corresponding ground-
truth maps for training and testing. The number of pixels for each class are shown in parenthesis in the legend.
(A missing vertical section in the middle was removed.)



(b) Training map

(a) University data
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FIGURE 10.3

False color image of the University data set (generated using the bands 68, 30, and 2) and the corresponding
ground-truth maps for training and testing. The number of pixels for each class are shown in parenthesis in the
legend.



(a) A large connected (b) More compact (c) A large connected region (d) More compact sub-regions

region formed by sub-regions after formed by merging pixles labeled  after spilitting the region in (c)
merging pixels splitting the as tiled in Centre data
labeled as street in region in (a)

DC Mall data

FIGURE 10.11
Examples for the region segmentation process. The iterative algorithm that uses mathematical morphology
operators is used to split a large connected region into more compact subregions.



(a) Pixel level Bayesian (b) Region level Bayesian (c) Quadratic Gausian

FIGURE 10.12
Final classification maps with the Bayesian pixel and region-level classifiers and the quadratic Gaussian classifier
for the DC Mall data set. Class color codes were listed in Figure 10.1.



(a) Pixel level Bayesian (b) Region level Bayesian

FIGURE 10.13

Final classification maps with the Bayesian pixel and region-level classifiers and the quadratic Gaussian classifier
for the Centre data set. Class color codes were listed in Figure 10.2.

(a) Pixel level Bayesian (b) Region level Bayesian (c) Quadratic Gaussian

FIGURE 10.14

Final classification maps with the Bayesian pixel and region-level classifiers and the quadratic Gaussian classifier
for the University data set. Class color codes were listed in Figure 10.3.



FIGURE 11.1
Example of multi-sensor visualization of an oil spill in the Baltic Sea created by combining an ENVISAT ASAR
image with a Radarsat SAR image taken a few hours later.
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FIGURE 11.2
An illustration of data fusion on different levels.
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Sensor-specific neural net
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FIGURE 11.4

Network architecture for decision-level fusion using neural networks.
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FIGURE 12.13
Greenness versus brightness, (a) original multi-spectral, (b) HT fusion, (c) PCA fusion.



FIGURE 12.16
(a) Original multi-spectral, (b)Result of ETM+ and Radarsat image fusion with HT (Gaussian window with
spread o = /2 and window spacing d = 4) (RGB composition 5-4-3).
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FIGURE 12.17

Greenness versus brightness, (a) original multi-spectral, (b) LANDSAT-SAR fusion with HT.
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FIGURE 13.9
MLP sea ice classification maps obtained using (a) ERS, (b) RADARSAT, (c) ERS and RADARSAT, (d) ERS,
RADARSAT, and Meteor images. The classifiers” parameters are given in Table 13.4.

FY smooth I FY medium deformation - FY deformed - Not classified

- Young ice - Open water - Nilas

FIGURE 13.10
LDA sea ice classification maps obtained using: (a) ERS; (b) RADARSAT; (c) ERS and RADARSAT; and (d) ERS,
RADARSAT, and Meteor images.




FIGURE 15.12
Ground-truth data for training.
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